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The discovery of functional dependencies from relations is an important database analysis
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the erroneous or exceptional rows can be identified easily. Experiments show that TANE is fast in
practice. For benchmark databases the running times are improved by several orders of magnitude
over previously published results. The algorithm is also applicable to much larger datasets than the

previous methods.
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1. FUNCTIONAL AND APPROXIMATE
DEPENDENCIES

Functional dependencies are relationships between attributes
of a database relation: a functional dependency states that
the value of an attribute is uniquely determined by the
values of some other attributes. For example, in an address
database, zip code is determined by city and street address.
The discovery of functional dependencies from relations has
received considerable interest (e.g. [1, 2, 3, 4, 5, 6, 7, 8]).

Automated database analysis is, of course, interesting for
knowledge discovery and data mining (KDD) purposes. For
instance, consider a database of chemical compounds and
their outcomes on various bioassays. Discovering that an
essential quality, such as carcinogenicity, of a compound
depends functionally from certain structural attributes can be
invaluable. Functional dependencies also have well-known
applications in the areas of database management, reverse
engineering [9] and query optimization [10].

Formally, afunctional dependencyover a relation schema
R is an expressionX → A, whereX ⊆ R and A ∈ R. The
dependencyholdsor is valid in a given relationr over R if
for all pairs of tuplest, u ∈ r we have: ift [B] = u[B] for
all B ∈ X , thent [ A] = u[ A] (we also say thatt andu agree
on X and A). A functional dependencyX → A is minimal
(in r ) if A is not functionally dependent on any proper subset
of X , i.e. if Y → A does not hold inr for anyY ⊂ X . The
dependencyX → A is trivial if A ∈ X . The central task we
consider is the following: given a relationr , find all minimal
non-trivial dependencies that hold inr .

An approximate functional dependency is a functional
dependency that almost holds. For example, gender
is approximately determined by first name. Such
dependencies arise in many databases when there is a natural
dependency between attributes, but some tuples contain
errors or represent exceptions to the rule. The discovery
of unexpected but meaningful approximate dependencies
seems to be an interesting and realistic goal in many
data mining applications. Consider, again, a database of
chemical compounds. An approximate dependency from a
set of structural attributes to the carcinogenicity could be
as valuable as a functional dependency: both could provide
valuable hints to biochemists for potential causes of cancer
but neither can be taken as a fact without further analysis by
domain specialists. Approximate functional dependencies
also have applications in database design [11].

There are many possible ways of defining the approxi-
mateness of a dependencyX → A. The definition we use
is based on the minimum number of tuples that need to be
removed from the relationr for X → A to hold in r : the
error e(X → A) is defined ase(X → A) = min{|s| |
s ⊆ r and X → A holds in r \ s}/|r |. The measuree
has a natural interpretation as the fraction of tuples with
exceptions or errors affecting the dependency. Given an
error thresholdε, 0 ≤ ε ≤ 1, we say thatX → A
is an approximate (functional) dependencyif and only if
e(X → A) is at mostε. In this paper, we also consider the
approximate dependency inference task: given a relationr
and a thresholdε, find all minimal non-trivial approximate
dependencies.
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We describe a new approach to the discovery of both
functional and approximate dependencies, and we present
TANE, an algorithm that implements the ideas. The
main innovation is a new method for determining whether
a dependency holds or not. The method is based on
representing attribute sets by equivalence class partitions of
the set of tuples. TANE also has an improved method for
searching the space of functional dependencies.

The worst case time complexity of the algorithm with
respect to the number of attributes is exponential, but this
is inevitable since the number of minimal dependencies can
be exponential in the number of attributes [2, 12]. However,
with respect to the number of tuples, the time complexity
is only linear (provided that the set of dependencies does
not change as the number of tuples increases). To our
knowledge, only one previous algorithm can claim this [13].
Previous algorithms have almost invariably been based
on either repeatedly sorting the tuples of the relation or
comparing every tuple to all other tuples and this can
obviously be inefficient for large relations. The linearity
makes TANE especially suitable for relations with a large
number of tuples.

Experimental results show that the algorithm is effective
in practice and that it makes the discovery of functional and
approximate dependencies feasible for relations with even
hundreds of thousands of tuples. Dependency discovery
tasks that have been reported to take minutes or even hours
are solved with the new algorithm in seconds or fractions of
a second on a PC.

1.1. Related work

Several algorithms for the discovery of functional depen-
dencies have been presented [1, 3, 5, 6, 12, 13, 14]. We
review these algorithms and compare them with our method
in Section 5.3. The complexity of discovering functional
dependencies has been studied in [2, 12, 15].

Approximate functional dependencies have been consid-
ered in [7, 8, 16, 17]. Kivinen and Mannila [16] define
several measures for the error of a dependency and derive
bounds for discovering dependencies with errors; they
denote the measuree by g3.

The use of partitions to describe and define functional
and approximate dependencies has been suggested in [8]
parallel to our work. There the emphasis is on a conceptual
viewpoint and no algorithms are given. Partition semantics
for relations have been considered in [18], and a rough set
approach in [19].

Our search strategy is, on an abstract level, similar to
the search of association rules [20]: one first computes
some non-trivial information about attribute sets (partitions
in our case as opposed to frequent itemsets in the case
of association rules), from which the dependencies (versus
association rules) can be computed easily. The levelwise
method for the computation of dependencies is an instance
of the generic data mining algorithm [21], also used
successfully in thea priori algorithm for association rule
mining [20].

1.2. Paper organization

We start in Section 2 by formulating the dependency
discovery task in terms of equivalence classes and partitions.
In Section 3 we lay out the principles of searching the space
of functional dependencies. Detailed algorithms are given in
Section 4 and analysed in Section 5. We give experimental
results in Section 6 and conclude in Section 7.

An earlier and shorter version of this paper appeared
as [22]. Proofs of non-trivial lemmata in this article
can be found in [23]. An implementation of the TANE

algorithm can be obtained via the WWW page athttp://
www.cs.helsinki.fi/research/fdk/datamining/tane/.

2. PARTITIONS AND DEPENDENCIES

A dependencyX → A holds if all tuples that agree onX also
agree onA. Our approach to the discovery of dependencies
is based on considering sets of tuples that agree on some set
of attributes. Determining whether a dependency holds or
not can be done by checking whether the tuples agree on the
right-hand side whenever they agree on the left-hand side.
Furthermore, when this is not the case, we can easily identify
the tuples that do not agree on the right-hand side. Thus the
approach extends naturally to approximate dependencies.
Formally, the approach can be described using equivalence
classes and partitions.

2.1. Partitions

Two tuplest andu areequivalentwith respect to a given set
X of attributes ift [ A] = u[ A] for all A in X . Any attribute
set X partitions the tuples of the relation into equivalence
classes. We denote theequivalence classof a tuplet ∈ r
with respect to a given setX ⊆ R by [t ] X , i.e. [t ] X = {u ∈
r | t [ A] = u[ A] for all A ∈ X}. The setπX = {[t ] X | t ∈ r}
of equivalence classes is apartition of r underX . That is,
πX is a collection of disjoint sets (equivalence classes) of
tuples, such that each set has a unique value for the attribute
setX and the union of the sets equals the relationr . Therank
|π | of a partitionπ is the number of equivalence classes inπ .

EXAMPLE 1. Consider the relation in Figure 1. Attribute
A has value 1 only in tuples 1 and 2, so they form an
equivalence class [1]{A} = [2]{A} = {1, 2} (we use here
tuple identifiers to denote tuples). The whole partition
with respect toA is π{A} = {{1, 2}, {3, 4, 5}, {6, 7, 8}}.
The partition with respect to{B, C} is π{B,C} =
{{1}, {2}, {3, 4}, {5}, {6}, {7}, {8}}.

2.2. Partition refinement

The concept of partition refinement gives almost directly
functional dependencies. A partitionπ refines another
partition π ′ if every equivalence class inπ is a subset of
some equivalence class ofπ ′. We have the following lemma.

LEMMA 2.1.A functional dependencyX → A holds if
and only ifπX refinesπ{A}.
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Tuple ID A B C D
1 1 a $ Flower
2 1 A Tulip
3 2 A $ Daffodil
4 2 A $ Flower
5 2 b Lily
6 3 b $ Orchid
7 3 C Flower
8 3 C # Rose

Partitions of attributes:
π{A} = {{1, 2}, {3, 4, 5}, {6, 7, 8}}
π{B} = {{1}, {2, 3, 4}, {5, 6}, {7, 8}}
π{C} = {{1,3, 4, 6}, {2, 5, 7}, {8}}
π{D} = {{1, 4, 7}, {2}, {3}, {5}, {6}, {8}}

FIGURE 1. An example relation and its partitions with respect to
all attributes.

There is an even simpler test for whetherX → A holds
or not: check if |πX | = |πX∪{A}|. If πX refinesπ{A},
thenπX∪{A} equalsπX . On the other hand, sinceπX∪{A}
always refinesπX , πX∪{A} cannot have the same number of
equivalence classes asπX unlessπX∪{A} andπX are equal.
We have shown the following lemma.

LEMMA 2.2.A functional dependencyX → A holds if
and only if|πX | = |πX∪{A}|.

2.3. Approximate dependencies

Recall that the errore(X → A) of a dependencyX → A is
the minimum fraction of tuples that must be removed from
the relation forX → A to hold. The errore(X → A)

can be computed from the partitionsπX andπX∪{A} in the
following way. Any equivalence classc of πX is the union
of one or more equivalence classesc′

1, c′
2, . . . of πX∪{A},

and the tuples in all but one of thec′
i s must be removed for

X → A to hold. The minimum number of tuples to remove
is thus the size ofc minus the size of the largest of thec′

i s.
Summing that over all equivalence classesc of πX gives the
total number of tuples to remove. Thus we have

e(X → A)

= 1 −
∑

c∈πX

max{|c′| ∣∣ c′ ∈ πX∪{A} andc′ ⊆ c}/|r |.

An algorithm with which to computee(X → A) given the
partitionsπX andπX∪{A} is described in Section 4.

3. SEARCH

3.1. Search strategy

To find all minimal non-trivial dependencies, TANE works as
follows. It starts the search from singleton sets of attributes
and works its way to larger attribute sets through the set
containment lattice level by level. When the algorithm
is processing a setX , it tests dependencies of the form

X \ {A} → A, where A ∈ X . This guarantees that only
non-trivial dependencies are considered. The small-to-large
direction of the algorithm can be used to guarantee that only
minimal dependencies are output. It can also be used to
prune the search space efficiently (see Figure 2).

A similar small-to-large search strategy, the levelwise
algorithm, has been used successfully in many data mining
applications [21]. In addition to effective pruning, the
efficiency of the levelwise algorithm is based on reducing
the computation on each level by using results from previous
levels.

In this section we consider different aspects of the
search, including effective pruning criteria for the levelwise
algorithm in TANE, as well as fast computation of partitions.
Both tasks can be solved efficiently in the levelwise strategy
by using information from the previous levels. Based on the
material presented in this section, exact algorithms are given
in Section 4.

3.2. Pruning the search space

3.2.1. Rhs candidate pruning
TANE works through the lattice until the minimal depen-
dencies that hold are found. To test the minimality of a
potential dependencyX \ {A} → A, we need to know
whetherY \ {A} → A holds for some proper subsetY of X .
We store this information in the setC(Y ) of right-hand side
candidates ofY .

If A ∈ C(X) for a given setX , thenA has not been found
to depend on any proper subset ofX . More precisely, the
collection ofinitial rhs candidatesof a setX ⊆ R is C(X) =
R \C(X), whereC(X) = {A ∈ X | X \ {A} → A holds}. To
find minimal dependencies, it suffices to test dependencies
X \ {A} → A, whereA ∈ X and A ∈ C(X \ {B}) for all
B ∈ X .

EXAMPLE 2. To illustrate the initial rhs candidate set,
assume that TANE is considering the setX = {A, B, C} and
that{C} → A is a valid dependency. Since{C} → A holds,
we have thatA 6∈ C({A, C}) = C(X \{B}), which tells TANE

that{B, C} → A is not minimal.

Pruning the search space in TANE is based on the fact that
if C(X) = ∅, thenC(Y ) = ∅ for all supersetsY of X . Thus
no dependency of the formY \ {A} → A can be minimal
and the setY need not be processed at all. The breadth-first
search in the set containment lattice can use this information
effectively, as illustrated in Figure 2.

3.2.2. Rhs+ candidates
While the initial rhs candidates are sufficient to guarantee
the minimality of discovered dependencies, we will use
improved rhs+ candidatesC+(X) that prune the search
space more effectively:

C+(X) = {A ∈ R | ∀B ∈ X :

X \ {A, B} → {B} does not hold}.
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FIGURE 2. A pruned set containment lattice for{A, B, C, D}.
Due to the deletion ofB, only the bold parts are accessed by the
levelwise algorithm.

Note thatA can equalB. The following lemma shows that
we can use the rhs+ candidates to test the minimality of a
dependency just as we would use the initial rhs candidates.

LEMMA 3.1.Let A ∈ X and letX \ {A} → A be a valid
dependency. The dependencyX \ {A} → A is minimal if
and only if, for allB ∈ X , we haveA ∈ C+(X \ {B}).

The lemma would hold if we replacedC+(X \ {B}) with
C(X \ {B}), but rhs+ candidates have two advantages over
initial rhs candidates. First, we may encounter aB for which
A 6∈ C+(X \ {B}) and stop checking earlier, saving some
time. Second and more importantly, for someB, C+(X\{B})
can be empty whileC(X \ {B}) is not. Then, with rhs+
candidates, the setX is never processed due to the pruning.

The definition of C+(X) is based on a fundamental
property of functional dependencies, stated in the following
lemma.

LEMMA 3.2.Let B ∈ X and letX \ {B} → B be a valid
dependency. IfX → A holds, thenX \ {B} → A holds.

The lemma allows us to remove additional attributes from
the initial rhs candidate setsC(X). Assume thatX\{B} → B
holds for someB ∈ X . Then, by the lemma, a dependency
with X on the left-hand side cannot be minimal because we
can removeB from the left-hand side without changing the
validity of the dependency. Hence, we can safely remove
from C(X) the following set:

C ′(X) =
{

R \ X if ∃B ∈ X : X \ {B} → B holds

∅ otherwise.

EXAMPLE 3. Assume that TANE is considering the
setX = {A, B, C} and that{C} → B is a valid dependency.
Then A ∈ C ′({B, C}) = C ′(X \ {A}) which tells TANE that
X \ {A} → A is not minimal. Note that TANE does not need
to know whetherX \ {A} → A holds or not.

Furthermore, assume thatX has a proper subsetY such
that Y \ {B} → B holds for someB ∈ Y . Then we can
also remove fromC(X) all A ∈ X \ Y . The set of attributes

removed by this rule is the following:

C ′′(X) = {A ∈ X | ∃B ∈ X \ {A} :

X \ {A, B} → B holds}.
EXAMPLE 4. Assume that TANE is considering the

set X = {A, B, C, D}, and that{C} → B is a valid
dependency. ThenA ∈ C ′′({A, B, C}) = C ′′(X \ {D})
which tells TANE that X \ {A} → A is not minimal.

Finally, the following lemma shows that the sufficient but
optimized set of rhs+ candidatesC+(X) can be also defined
in terms ofC(X), C ′(X), andC ′′(X).

LEMMA 3.3.

C+(X) = {A ∈ R | ∀B ∈ X :

X \ {A, B} → {B} does not hold}
= ((R \ C(X)) \ C ′(X)) \ C ′′(X)

3.2.3. Key pruning
An attribute setX is a superkeyif no two tuples agree on
X , i.e. partitionπX consists of singleton equivalence classes
only. The setX is a key if it is a superkey and no proper
subset of it is a superkey. When a key is found during the
search of dependencies, additional pruning methods can be
applied.

LEMMA 3.4.Let B ∈ X and letX \ {B} → B be a valid
dependency. IfX is a superkey, thenX \ {B} is a superkey.

Normally, a dependencyX → A, A 6∈ X, is tested when
X ∪ {A} is processed because we needπX∪{A} for validity
testing. However, ifX is a superkey thenX → A is always
valid and we do not needX ∪ {A}.

Now, consider a superkeyX that is not a key. Obviously,
a dependencyX → A is not minimal for anyA 6∈ X .
Furthermore, ifA ∈ X and X \ {A} → A holds, then, by
Lemma 3.4,X \ {A} is a superkey and we do not needπX

for testing the validity ofX \ {A} → A. In other words, we
have no use forX or πX in finding minimal dependencies.
Hence, we can prune all keys and their supersets, i.e. the
superkeys that are not keys.

3.3. Computing with partitions

We next introduce two ways to reduce the time and space
requirement of working with partitions. The first one
replaces partitions with a more compact representation,
‘stripped partitions’. The second one is a method to
quickly approximate thee error. These methods optimize
the algorithms described in the following section. We
then describe how to compute partitions efficiently in the
levelwise TANE algorithm.

For both optimizations we need the concept of approxi-
mate superkey. Thee error measure can be extended to other
properties of a relation [24]; in particular, it can be extended
to the property of an attribute set being a superkey. We define
e(X) to be the minimum fraction of tuples that need to be
removed from the relationr for X to be a superkey. Ife(X)

THE COMPUTER JOURNAL, Vol. 42, No. 2, 1999



104 Y. HUHTALA et al.

is small, thenX is anapproximate superkey. The errore(X)

is easy to compute from the partitionπX using the equation
e(X) = 1 − |πX |/|r |.

3.3.1. Stripped partitions
A stripped partitionis a partition with equivalence classes
of size one removed. The stripped version of a partitionπ

is denoted bŷπ . For example,π̂{D} = {{1, 4, 7}} in the
relation of Figure 1. An intuitive explanation for discarding
singleton equivalence classes is that a singleton equivalence
class (of the left-hand side) cannot break any dependency.

Stripped partitions contain the same information as full
partitions. For example, the valuee(X) is easy to compute
from stripped partitions using the equation

e(X) = (||π̂X || − |π̂X |)/|r |, (1)

where ||π̂X || is the sum of the sizes of the equivalence
classes in̂πX . Also, the refinement relations of partitions are
the same, and Lemma 2.1 thus holds for stripped partitions
as well.

Lemma 2.2 does not hold for stripped partitions, because
|π̂X | can be the same as|π̂X∪{A}| even if πX 6= πX∪{A}.
However, sincee(X) = e(Y ) if and only if |πX | = |πY |, we
can replace Lemma 2.2 with the following lemma.

LEMMA 3.5.A functional dependencyX → A holds if
and only ife(X) = e(X ∪ {A}).

3.3.2. Boundinge
Computing the errore(X → A) from partitions needs
O(|r |) time. It is often possible to avoid this computation
by using the following bounds.

e(X) − e(X ∪ {A}) ≤ e(X → A) ≤ e(X). (2)

If e(X) − e(X ∪ {A}) > ε or e(X) < ε, TANE does
not need to computee(X → A) to find whetherX →
A holds approximately or not. The time saving by this
optimization can be significant, because the number of
functional dependencies considered can be as much as|R|/2
times the number of attribute sets processed.

3.3.3. Computing partitions
The partitions are not computed from scratch for each
attribute set. Instead, when TANE works its way through the
lattice, it computes a partition as a product of two previously
computed partitions: theproduct of two partitionsπ ′ and
π ′′, denoted byπ ′ · π ′′, is the least refined partitionπ that
refines bothπ ′ andπ ′′. We have the following result.

LEMMA 3.6.For all X, Y ⊆ R, πX · πY = πX∪Y .

TANE computes the partitionsπ{A}, for each A ∈ R,
directly from the database. PartitionsπX , for |X | ≥ 2,
are computed as a product of partitions with respect to two
subsets ofX . Any two different subsets of size|X | − 1 will
do, which is convenient for the levelwise algorithm since
only partitions from the previous level are needed.

Once TANE has the partitionπX , it computes the error
e(X), to be used in validity testing based on Lemma 3.5. The
full partition is needed only for the computation of partitions
on the next level.

After the initial setup of the first partitionsπ{A} for all
A ∈ R, TANE deals with tuple identifiers only. This gives
two advantages. First, the different attribute types and values
can be discarded and the computation is conducted, in effect,
on integers. The operations on partitions are thus simple and
fast. Second, when computing approximate dependencies,
the identifiers of the exceptional tuples are readily available.

4. ALGORITHMS

4.1. TANE main algorithm

To find all valid minimal non-trivial dependencies, TANE

searches the set containment lattice in a levelwise manner.
A level L` is the collection of attribute sets of sizèsuch
that the sets inL` can potentially be used to construct
dependencies based on the considerations of the previous
sections. TANE starts with L1 = {{A} | A ∈ R}, and
computesL2 from L1, L3 from L2, and so on, according
to the information obtained during the algorithm.

ALGORITHM. TANE

Input: relationr over schemaR
Output: minimal non-trivial functional dependencies that
hold in r

1 L0 := {∅}
2 C+(∅) := R
3 L1 := {{A} | A ∈ R}
4 ` := 1
5 while L` 6= ∅
6 COMPUTE DEPENDENCIES(L`)
7 PRUNE(L`)
8 L`+1 := GENERATE NEXT LEVEL(L`)

9 ` := ` + 1

The procedureCOMPUTE DEPENDENCIES(L`) finds the
minimal dependencies with the left-hand side inL`−1. The
procedurePRUNE(L`) prunes the search space by deleting
sets from L` as described in Section 3. The procedure
GENERATE NEXT LEVEL(L`) forms the next level from
the current level. These procedures are described in the
following subsections.

4.2. Generating levels

The procedureGENERATE NEXT LEVEL computes the level
L`+1 from L`. The level L`+1 will contain only
those attribute sets of sizè + 1 which have all their
subsets of sizè in L`. The pruning methods guarantee
that no dependencies are lost. The specification of
GENERATE NEXT LEVEL is

L`+1 = {X | |X | = ` + 1 and for allY with Y ⊂ X

and|Y | = ` we haveY ∈ L`}.
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The algorithm is given below.

Procedure GENERATE NEXT LEVEL(L`)

1 L`+1 := ∅
2 for each K ∈ PREFIX BLOCKS(L`) do
3 for each {Y, Z} ⊆ K , Y 6= Z do
4 X := Y ∪ Z
5 if for all A ∈ X , X \ {A} ∈ L` then
6 L`+1 := L`+1 ∪ {X}
7 return L`+1

The procedurePREFIX BLOCKS(L`) partitions L` into
disjoint blocks as follows. Consider a setX ∈ L` to be
a sorted list of attributes. Two setsX, Y ∈ L` belong
to the same prefix block if they have a common prefix
of length ` − 1, i.e. they differ in only one attribute and
the non-matching attribute is the last attribute in bothX
and Y . Each prefix block forms a consecutive block in
lexicographic ordering ofL`. The prefix blocks are thus easy
to compute from lexicographically orderedL`. The idea of
this procedure is from [20] and is explained in detail in [25,
Algorithm 3].

4.3. Computing dependencies

Below is the procedureCOMPUTE DEPENDENCIES of
Algorithm TANE.

Procedure COMPUTE DEPENDENCIES(L`)

1 for each X ∈ L` do
2 C+(X) := ⋂

A∈X C+(X \ {A})
3 for each X ∈ L` do
4 for each A ∈ X ∩ C+(X) do
5 if X \ {A} → A is valid then
6 outputX \ {A} → A
7 removeA from C+(X)

8 remove allB in R \ X from C+(X)

By Lemma 3.1, steps 2, 4 and 5 guarantee that the procedure
outputs exactly the minimal dependencies of the formX \
{A} → A, whereX ∈ L` and A ∈ X . The validity testing
on line 5 is based on Lemma 3.5.

COMPUTE DEPENDENCIES(L`) also computes the sets
C+(X) for all X ∈ L`. The following lemma shows that
this is done correctly.

LEMMA 4.1.For all Y ∈ L`−1, let C+(Y ) be cor-
rectly computed. After executing the procedureCOM-
PUTE DEPENDENCIES(L`), C+(X) is correctly computed
for all X ∈ L`.

Line 8 implements the difference betweenC+(X) and
C(X). If that line was removed, the algorithm would work
correctly, but pruning might be less effective.

4.4. Pruning the lattice

The pruning procedure of Algorithm TANE is given below.

Procedure PRUNE(L`)

1 for each X ∈ L` do
2 if C+(X) = ∅ do
3 deleteX from L`

4 if X is a (super)keydo
5 for each A ∈ C+(X) \ X do
6 if A ∈ ⋂

B∈X C+(X ∪ {A} \ {B}) then
7 outputX → A
8 deleteX from L`

The procedurePRUNE implements the two pruning rules
described in Section 3. By the first rule,X is deleted if
C+(X) = ∅. By the second rule,X is deleted ifX is a
key. In the latter case, the algorithm may also output some
dependencies. We will show that the pruning does not cause
the algorithm to miss any dependencies.

Let us first consider pruning by emptyC+(X). If
C+(X) = ∅, the loop on lines 4–8 in the procedure
COMPUTE DEPENDENCIES and the loop on lines 5–7 in
the procedurePRUNE will not be executed at all. Since
C+(Y ) = ∅ also for all Y ⊃ X , deletingX will have no
effect on the output of the algorithm.

Let us now consider the pruning of keys. The correctness
of the pruning is based on the following lemma.

LEMMA 4.2.Let X be a superkey and letA ∈ X . The
dependencyX \ {A} → A is valid and minimal if and only
if X \ {A} is a key and, for allB ∈ X , A ∈ C+(X \ {B}).

A dependencyX → A is output on line 7 of the procedure
PRUNE if and only if X is a key, A ∈ C+(X) \ X , and
A ∈ C+(X ∪ {A} \ {B}), for all B ∈ X . Lemma 4.2 shows
that such a dependency is valid and minimal. The lemma
also shows that if a minimal dependencyX \ {A} → A
is not output in the procedureCOMPUTE DEPENDENCIES

because of the pruning, it is output in the procedurePRUNE.
Therefore, the pruning works correctly.

4.5. Computing partitions

The above algorithm contains no references to partitions.
However, the implementation of the central test on line 5
of COMPUTE DEPENDENCIESrequires knowinge(X) and
e(X \ {A}). Also, the superkey test on line 4 ofPRUNE

is based one(X). In TANE, the e values are computed
from stripped partitions by Equation (1). The partitions are
computed as follows.

In the beginning, partitions with respect to the singleton
attribute sets are computed straight from the relationr . A
partitionπ{A} is computed from the columnr [ A] as follows.
First, the values of the column are replaced with integers
1, 2, 3, . . . so that the equivalence relations do not change,
i.e. same values are replaced by same integers and different
values with different integers. This can be done in linear
time using a data structure such as a trie or a hash table
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to map the original values to integers. After this, the value
t [ A] is the identifier of the equivalence class [t ]{A} of π{A},
and π{A} is then easy to construct. Finally, the singleton
equivalence classes inπ{A} are stripped off to form the
stripped partition̂π{A}.

A partition with respect to a larger attribute setX is
computed whenX is added to its level on line 6 of
GENERATE NEXT LEVEL. The setX was formed asY ∪ Z
and the partitionπX is computed as the productπY ·πZ . The
product is computed with the following procedure in linear
time.

Procedure STRIPPEDPRODUCT

Input: Stripped partitionŝπ ′ = {c′
1, . . . , c′

|π̂ ′|} and π̂ ′′ =
{c′′

1, . . . , c′′
|π̂ ′′|}.

Output: Stripped partition̂π = π̂ ′ · π ′′.

1 π̂ := ∅
2 for i := 1 to |π̂ ′| do
3 for each t ∈ c′

i do T [t ] := i
4 S[i ] := ∅
5 for i := 1 to |π̂ ′′| do
6 for each t ∈ c′′

i do
7 if T [t ] 6= NULL then S[T [t ]] := S[T [t ]] ∪ {t}
8 for each t ∈ c′′

i do
9 if |S[T [t ]] | ≥ 2 then π̂ := π̂ ∪ {S[T [t ]] }
10 S[T [t ]] := ∅
11 for i := 1 to |π̂ ′| do
12 for each t ∈ c′

i do T [t ] := NULL
13 return π̂

The procedure assumes that the tableT has been initialized
to all NULL. Since the procedure resetsT to all NULL
before exit, the same table can used repeatedly without re-
initialization.

4.6. Approximate dependencies

Algorithm TANE can be modified to compute all minimal
approximate dependenciesX → A with e(X → A) ≤
ε, for a given threshold valueε. The key modification
is to change the validity test on line 5 of procedure
COMPUTE DEPENDENCIESto

5′ if e(X \ {A} → A) ≤ ε then

In addition, the pruning has to be slightly weakened by
replacing line 8 ofCOMPUTE DEPENDENCIESwith

8′ if X \ {A} → A holds exactlythen
9′ remove allB in R \ X from C+(X)

The above algorithm returns only minimal approximate
dependencies. In some applications, it might also be useful
to know approximate dependencies that are not minimal but
have smaller error. We leave the necessary modifications as
an exercise to the reader.

TANE tries to resolve the test on line 5′ first by using the
bounds in (2). If that fails the exact value ofe(X \{A} → A)

is computed from partitions using the following procedure.

Procedure e
Input: Stripped partitionŝπX andπ̂X∪{A}.
Output: e(X → A).

1 e := 0
2 for eachc ∈ π̂X∪{A} do
3 choose (arbitrary)t ∈ c
4 T [t ] := |c|
5 for eachc ∈ π̂X do
6 m := 1
7 for each t ∈ c do m := max{m, T [t ]}
8 e := e + |c| − m
9 for eachc ∈ π̂X∪{A} do
10 chooset ∈ c (samet as on line 3)
11 T [t ] := 0
12 return e/|r |
Note the similarity to the procedureSTRIPPEDPRODUCT.
Here too, the tableT must be initialized to all 0 once, but
needs no re-initialization after that.

5. ANALYSIS

5.1. Worst case analysis

The time and space complexities of the TANE algorithm
depend on the number of sets in the levelsL`, called the
sizes of the levels. Letsmax be the size of the largest level
ands the sum of the sizes of all levels. In the worst case,
s = O(2|R|) and smax = O(2|R|/

√|R|). Another factor
is the number of keys, denoted byk. In the worst case,
k = O(smax) = O(2|R|/

√|R|).
During the computation, s partitions are formed.

The time complexity for computing the partitions is
O(s |r |). Not counting the handling of partitions, the
execution time of Algorithm TANE is dominated by random
(nonlinear) accesses to the levelsL`. During the whole
computation, procedureCOMPUTE DEPENDENCIESmakes
O(s |R|) random accesses on line 2, procedurePRUNE

O(k |R|2) random accesses on line 6 and procedure
GENERATE NEXT LEVEL O(s |R|) random accesses on
line 5. No operation is executed more often during
the computation. The access time depends on the
implementation of the levelsL`. Using suffix arrays [26]
gives O(|R| + log |L`|) access time, which isO(|R|)
because|L`| ≤ 2|R|. The suffix array forL` can be
constructed inO(|L`||R|) time.

In summary, the algorithm has time complexityO(s(|r |+
|R|2)+k |R|3). The algorithm needs to maintain at most two
levels at a time. Hence, the space complexity isO(smax(|r |+
|R|)). The following theorem gives upper bounds for the
time and space complexities in terms of the size of the input.

THEOREM 5.1.The time complexity of AlgorithmTANE

is bounded byO((|r |+|R|2.5)2|R|) and the space complexity
by O((|r | + |R|)2|R|/

√|R|).
Approximate validity testing needsO(|r |) time in contrast

to the O(1) time of exact validity testing. Thus, the time
complexity of finding approximate dependencies with TANE
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is O(v |r | + s |R|2 + k |R|3), wherev is the number of
validity tests done. In the worst case,v = s |R|/2 =
O(|R| 2|R|) and thus the time in terms of the size of the input
is O((|r ||R| + |R|2.5)2|R|).

5.2. Practical analysis

Due to the structure of the dependency set and pruning,
s andsmax can be significantly smaller than the worst case
analysis shows. The numberk of keys is almost always
much smaller thansmax. In addition, the average size of
stripped partitions can be much less than|r |. There are also
some implementation details that further reduce the practical
time and space complexities.

We have implemented the attribute sets as bit vectors of
O(1) words and the random access with hashing. This
means, in practice, that set operations and random access
take constant time. The time complexity is then reduced to
O(s(|r |+|R|)+k |R|2) and space complexity toO(smax|r |).
Limiting the bit vectors toO(1) words is not a severe
restriction because the number of attributes is typically small
and, due to exponential time and space complexities, the
algorithm could not handle a very large number of attributes
anyway.

To reduce the main memory requirement of the algorithm,
the partitions can be stored on disk. The algorithm can be
organized so that at most|R| partitions at a time are in the
main memory and each partition is written to disk and read
from disk only once. Then, the main memory requirement
is O(|r ||R| + smax) and the algorithm makesO(s) disk
accesses of sizeO(|r |). These modifications do not change
the time complexity of the algorithm.

The practical properties of the modified algorithm are
summarized below:

• CPU time:O(s(|r | + |R|) + k |R|2)
• disk accesses:O(s) accesses of sizeO(|r |)
• main memory requirement:O(|r ||R| + smax)

• disk space requirement:O(smax|r |)
To computee(X → A), we need the partitionsπX and

πX∪{A}, and not juste(X) and e(X ∪ {A}). This has two
negative effects on the approximate dependency version of
TANE. First, approximate validity testing is slower, by
a factor O(|r |) in the worst case, but somewhat less in
practice due to stripped partitions and the bounds fore
described in Section 3.3. Second, partitions are needed much
more often and, therefore, storing partitions to disk does
not work as well. The approximate dependency algorithm
works in O(v |r | + s |R| + k |R|2) time and O(smax|r |)
space. However, because there are more approximately
valid dependencies, pruning can be much more effective in
reducings, smax andv.

5.3. Comparison to other algorithms

One of the main advantages of the new algorithm is the
linear dependency on the number of tuples in the relation
(for a fixed set of dependencies). To our knowledge, the

only previously published practical algorithm achieving this
is by Schlimmer [4, 13], who uses decision trees for validity
tests. The decision tree approach is roughly equivalent
to computing each partition from partitions with respect
to singletons. It is slower by a factorO(|R|) than using
partitions the way we do. All other algorithms have�(|r |2)
or �(|r | log |r |) dependency on the number of tuples. Some
of these could actually be implemented to run in linear time
as well by using, e.g. radix sorting.

Schlimmer also used the levelwise search strategy, as
did Bell and Brockhausen [6]. Both use less effective
pruning criteria than we do, i.e. their algorithms may
end up computing a larger part of the lattice. In
addition, our implementation of the pruning based on the
procedureGENERATE NEXT LEVEL is more efficient than
what Schlimmer, and Bell and Brockhausen use.

There are also algorithms that search the lattice in a more
depth-first like manner [5, 12]. Such a search allows criteria
for the pruning of the search space that are different from the
breath-first search of the levelwise algorithm. A comparison
of the effectiveness of pruning in the two approaches is
difficult. However, validity and minimality testing, and the
mechanisms of pruning are less efficient in the depth-first
algorithms.

Still another approach is to first compute all maximal
invalid dependencies by a pairwise comparison of all tuples
and then compute the minimal valid dependencies from
the maximal invalid dependencies [1, 3, 12, 14]. The
first part of such algorithms requires�(|r |2) time with
respect to the number of tuples but is polynomial both in
the number of tuples and the number of attributes, while
the second part requires exponential time in the number of
attributes but has no dependency on the number of tuples.
The algorithm by Savnik and Flach [3] implements the
second part with a depth-first search. During the search,
the maximal invalid dependencies are used both for testing
validity of dependencies and for pruning the search space. In
Section 6 we present results of an experimental comparison
between our algorithm and the algorithm of Savnik and
Flach.

6. PERFORMANCE

We have implemented the TANE algorithm described in this
paper and experimented with it to find out how it performs
in practice. We have two implementations of the algorithm.
The first, scalable version, denoted simply as TANE, keeps
most of the partitions on disk as described in Section 5.2.
The other version, TANE/MEM, works completely in main
memory.

To provide perspective, we performed the same experi-
ments with the FDEP program of Savnik and Flach. The
FDEP implementation is based on the algorithm described in
[3] and is available at [27].

All algorithms, including FDEP, are written in C and were
compiled with a GNU C compiler with full optimizations.
All experiments were run on the same 233 MHz Pentium PC
with 64 MB of memory running the Linux operating system.
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TABLE 1. Performance of the algorithms on real life databases.

Database Time (s)

Name |r | |R| N TANE TANE/MEM FDEP

Lymphography 148 19 2730 68 24 88
Hepatitis 155 20 8250 30 14 663
Wisconsin breast cancer 699 11 46 1 0† 15
Wisconsin breast cancer× 64 44,736 11 46 81 23 17,521
Wisconsin breast cancer× 128 89,472 11 46 173 247 *
Wisconsin breast cancer× 512 357,888 11 46 884 * *
Adult 48,842 15 85 1451 * *
Chess 28,056 7 1 4 2 6685

†Time is 0.25 s.

TABLE 2. Performance of TANE/MEM on approximate dependency discovery. Times are given in seconds.

ε = 0.0 ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.5

Database |r | N Time N Time N Time N Time N Time

Lymphography 148 2730 89.1 3388 22.2 7031 4.9 6383 3.7 21 0.0†

Hepatitis 155 8250 16.6 9666 14.6 6617 9.3 2630 4.2 160 0.0†

W. breast cancer× 1 699 46 0.3 113 0.3 126 0.2 141 0.2 18 0.0†

W. breast cancer× 2 1398 46 0.5 113 0.5 126 0.5 141 0.4 18 0.1
W. breast cancer× 4 2796 46 1.1 113 1.1 126 1.0 141 0.9 18 0.2
W. breast cancer× 8 5592 46 2.4 113 2.3 126 2.0 141 1.9 18 0.4
W. breast cancer× 16 11,184 46 5.1 113 4.9 126 4.4 141 4.3 18 0.8
W. breast cancer× 32 22,368 46 11.0 113 10.6 126 9.3 141 8.9 18 1.8
W. breast cancer× 64 44,736 46 25.5 113 26.7 126 20.3 141 19.2 18 3.9
Chess 28,056 1 2.0 1 2.6 1 3.1 1 3.5 17 3.6

†Times are 0.01–0.02 s.

The times below are real times elapsed in the experiments
as reported by the Unixtime command. We report ‘wall
clock’ times rather than CPU times in order to make the cost
of I/O processing better visible and to give a fair account of
the cost of swapping of TANE/MEM with large databases.

We ran the algorithms on a number of real life databases.
The databases and their descriptions are available on the UCI
Machine Learning Repository [28]. The number of tuples,
attributes and minimal dependencies found (N) in each
database are shown in the left half of Table 1. The datasets
labeled ‘Wisconsin breast cancer× n’ are concatenations
of n copies of the Wisconsin breast cancer data. To avoid
duplicate tuples, all values in each copy were appended
with a unique string specific to that copy. Since the set of
dependencies is the same in all these datasets, we were able
to test how the algorithms scale with respect to the number
of database tuples only.

The top three rows of Table 1 show the performance of
the algorithms on three small databases. Running times are
in the right half of the table; they are rounded to the nearest
second. Our algorithms perform competitively in all cases.
The Lymphography and Hepatitis databases are apparently
very similar. However, our algorithms are much faster on
Hepatitis than on Lymphography while FDEP is an order

of magnitude faster on Lymphography than on Hepatitis.
This is a good demonstration of how different approaches
to pruning the search space have different effects in different
databases.

The bottom part of Table 1 reports the performance
of TANE on five larger databases. For TANE/MEM and
FDEP, some experiments are marked with an asterisk (*)
as infeasible; for TANE/MEM because of the lack of main
memory, and for FDEP if it did not finish within 5 h. TANE,
on the other hand, found the dependencies in seconds or
minutes and was never in danger of running out of memory.

Table 2 shows some performance results for TANE/MEM

in the approximate dependency discovery task for different
thresholdsε. Results for the Hepatitis, Wisconsin breast
cancer and Chess data sets are also presented graphically
in Figure 3: Nε/N0 stands for the number of approximate
dependencies found relative to the case for functional
dependencies; similarly, Timeε/Time0 denotes the relative
discovery time. Approximate dependencies could not be
discovered in the Adult data set with TANE/MEM due to the
lack of main memory.

Overall, approximate dependencies are found efficiently.
The number of dependencies found varies differently for
each dataset. Within a reasonable range 0≤ ε ≤
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FIGURE 3. Performance of TANE/MEM for approximate
dependencies in the Hepatitis (top), Wisconsin breast cancer
(middle), and Chess (bottom) data sets.

0.1, the time either increases slightly (Chess dataset),
decreases slightly (Wisconsin breast cancer), or drops
significantly (Hepatitis). The drop is even stronger with the
Lymphography dataset (shown only in the table).

To find out how the number of tuples affects the
algorithms, we ran a series of experiments with increasing
number of tuples. The relations were formed by
concatenating multiple copies of the Wisconsin breast
cancer data as described earlier; recall that the set of
dependencies remains the same. The results are illustrated
in Figure 4. FDEP performs almost quadratically in the
number of tuples while our algorithms are very near linear.
The sharp turn in the curve of TANE/MEM is caused by
the algorithm running out of main memory and starting to
use swap space. With the largest relation (357,888 tuples,
512 times Wisconsin breast cancer), TANE used about 22
MB of main memory and about 450 MB of temporary disk

FIGURE 4. Performance of the algorithms when the number of
tuples increases. The three graphs show the same data on different
scales.

space. The scaling properties of TANE/MEM on approximate
dependency discovery can be read from Table 2; again, the
performance is near linear in the number of tuples.

Our algorithms have not been optimized for memory
and disk space consumption. With data compression, the
feasible range of our algorithms can be extended. Even in
their current form our algorithms can handle much larger
databases than FDEP. Previously reported results for other
algorithms are even worse [1, 3, 4, 6].

For a perspective on the size of problems considered
before, consider Table 3. It contains results published in
previous articles, marked with a ‘dagger’ (†), and results
we obtained using TANE and the publicly available version
of FDEP. Many of the databases used in previous articles
are not publicly available, so results are missing altogether.
The Lymphography data set marked with an asterisk (∗) is
reported by Bell and Brockhausen [6] as well as by Savnik
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TABLE 3. Previously reported performance results and the new results. Numbers taken from other articles are marked with a ‘dagger’ (†);
the source is given at the top of the column.

Database Bell Bitton FDEP Schlimmer

Name |r | |R| |X | N et al. [6] et al. [1] [3] [4] T ANE

Lymphography∗ 150 19 7 641 >33 h† — 540 s† — —
Lymphography 148 19 19 2730 — — 88 s — 68.2 s
Rel1 7 7 7 8 — 0.02 s† — — —
Rel6 236 60 60 56 — 994 s† — — —
W. breast cancer 699 11 4 35 259 s† — 15 s 4440 s† 0.34 s
W. breast cancer 699 11 11 46 533 s† — 15 s — 0.76 s
W. breast cancer× 128 89,472 11 11 46 — — * — 173 s
Books 9931 9 9 25 17,040 s† — — — —

and Flach [3] to have 150 tuples while the one available at
the UCI repository has 148 tuples.

The column|X | gives an upper limit for the number of
attributes in the left-hand side of a dependency. Limiting
the maximum size makes the task easier. The columnN
gives the size of the results, i.e. the number of dependencies
output. The outputs are, however, different: some algorithms
only output a (minimal) cover of the dependencies that hold.

Since the tests were run in different environments direct
comparisons are not possible. The results are, however,
indicative. For an overview, consider the Wisconsin breast
cancer data set with the left-hand side limit|X | = 4.
Although small and restricted, it is the only case for which
there are results for four algorithms. TANE discovers
dependencies in 0.34 seconds, FDEP in 15 s (slower by a
factor of 44), Bell and Brockhausen [6] in 259 s (760 times
slower), and Schlimmer [4] in 4440 s (13,000 times slower).
It should be noted that Bell and Brockhausen [6] were the
only ones to report results obtained on top of a commercial
database management system, whereas all others used flat
files and specialized access methods.

7. CONCLUDING REMARKS

We have presented a new algorithm, TANE, for the discovery
of functional and approximate dependencies from relations.
The approach is based on considering partitions of the
relation and deriving valid dependencies from the partitions.
The algorithm searches for dependencies in a breadth-
first or levelwise manner. We showed how the search
space can be pruned effectively and how the partitions and
dependencies can be computed efficiently. Experimental
results and comparisons demonstrate that the algorithm is
fast in practice and that its scale-up properties are superior
to previous methods. The method works well with relations
of up to hundreds of thousands of tuples.

The method is at its best when the dependencies
are relatively small. When the size of the (minimal)
dependencies is roughly one half of the number of attributes,
the number of dependencies is exponential in the number

of attributes and the situation is more or less equally bad
for any algorithm. When the dependencies are larger than
that, the levelwise method that starts the search from small
dependencies is obviously further from the optimum. The
levelwise search can, in principle, be altered to start from
the large dependencies. Then, however, the partitions could
not be computed as efficiently.

There are also other interesting data mining applications
for partitions. Association rules between attribute–value
pairs can be computed with a small modification of the
present algorithm. An equivalence class corresponds
then to a particular value combination of the attribute
set. By comparing equivalence classes instead of full
partitions, we can find association rules. A possible
future research direction is to use the unified view
that partitions provide to functional dependencies and
association rules, independently observed also in [8], to find
an apt generalization of both and to develop an algorithm for
discovering such rules.
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pp. 234–239. AAAI Press.

[18] Cosmadakis, S. S., Kanellakis, P. C. and Spyratos, N. (1986)
Partition semantics for relations.J. Comp. Syst. Sci., 33, 203–
233.

[19] Ziarko, W. (1991) The discovery, analysis, and representation
of data dependencies in databases. In Piatetsky-Shapiro, G.
and Frawley, W. J. (eds),Knowledge Discovery in Databases,
pp. 195–209. AAAI Press, Menlo Park, CA.

[20] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H. and
Verkamo, A. I. (1996) Fast discovery of association rules.
In Fayyad U. M., Piatetsky-Shapiro, G., Smyth, P. and
Uthurusamy, R. (eds),Advances in Knowledge Discovery and
Data Mining, pp. 307–328. AAAI Press, Menlo Park, CA.

[21] Mannila, H. and Toivonen, H. (1997) Levelwise search and
borders of theories in knowledge discovery.Data Mining and
Knowledge Discovery, 1, 241–258.
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