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ABSTRACT
As data-driven methods are becoming pervasive in a wide variety of
disciplines, there is an urgent need to develop scalable and sustain-
able tools to simplify the process of data science, to make it easier
to keep track of the analyses being performed and datasets being
generated, and to enable introspection of the workflows. In this pa-
per, we describe our vision of a unified provenance and metadata
management system to support lifecycle management of complex
collaborative data science workflows. We argue that a large amount
of information about the analysis processes and data artifacts can,
and should be, captured in a semi-passive manner; and we show
that querying and analyzing this information can not only simplify
bookkeeping and debugging tasks for data analysts but can also
enable a rich new set of capabilities like identifying flaws in the
data science process itself. It can also significantly reduce the time
spent in fixing post-deployment problems through automated anal-
ysis and monitoring. We have implemented an initial prototype of
our system, called PROVDB, on top of git (a version control sys-
tem) and Neo4j (a graph database), and we describe its key features
and capabilities.

1. INTRODUCTION
Data-driven methods and products are becoming increasingly

common in a variety of communities, including sciences, educa-
tion, economics, and social and web analytics. This has resulted in
a pressing need for sustainable and scalable tools that facilitate the
end-to-end data science process by making it easy to maintain and
share time-evolving datasets; to collaboratively clean, integrate,
and analyze datasets; to perform introspective analysis to identify
errors in the data science pipelines; and to learn from other data sci-
entists. This is especially challenging because the process of col-
laborative data science is often ad hoc, typically featuring highly
unstructured datasets, an amalgamation of different tools and tech-
niques, significant back-and-forth among the members of a team,
and trial-and-error to identify the right analysis tools, algorithms,
models, and parameters. Although there is much prior and ongoing
work on developing tools to perform specific data analysis tasks,
platform support for managing the end-to-end process is still lack-
ing in practice. There is no easy way to capture and reason about ad
hoc data science pipelines, many of which are often spread across
a collection of analysis scripts. Metadata or provenance informa-
tion about how datasets were generated, including the programs or
scripts used for generating them and/or values of any crucial pa-
rameters, is often lost. Similarly, it is hard to keep track of any
dependencies between the datasets. As most datasets and analysis
scripts evolve over time, there is also a need to keep track of their
versions over time; using version control systems (VCS) like git
can help to some extent, but those don’t provide sufficiently rich
introspection capabilities.

Lacking platform support for capturing and analyzing such prove-
nance and metadata information, data scientists are required to man-
ually track and act upon such information, which is not only te-
dious, but error-prone. For example, data scientists must manually
keep track of which derived datasets need to be updated when a
source dataset changes. They often use spreadsheets to list which
parameter combinations have been tried out during the develop-
ment of a machine learning model. Debugging becomes signifi-
cantly harder; e.g., a small change in an analysis script may have
significant impact on the final result, but identifying that change
may be non-trivial, especially in a collaborative setting. It is simi-
larly challenging to identify which input records are most relevant
to a particular output record. “Repeatability” can often be very dif-
ficult, even for the same researcher, because of an amalgamation
of constantly evolving tools and datasets being used, and because
of a lack of easy-to-use mechanism to keep track of the parameter
values used during analysis or modeling. Critical errors may be
hidden in the mess of datasets and analysis scripts that cannot be
easily identified; e.g., a data scientist may erroneously be training
on the test dataset due to an inadvertent mistake while creating the
testing and training datasets.

This paper describes a system, called PROVDB, for unified man-
agement of all kinds of metadata about collaborative data science
workflows that gets generated during the analysis process; this in-
cludes (a) version lineages of data, scripts, and results (collectively
called artifacts), (b) data provenance among artifacts which may or
may not be structured, (c) workflow metadata on derivations and
dependencies among artifact snapshots, and so on. Our hypothesis
is that by combining all this information in one place, and making
it easy to analyze or query this information, we can enable a rich set
of functionality that can simplify the lives of data scientists, make it
easier to identify and eliminate errors, and decrease the time to ob-
tain actionable insights. This is hardly a new observation, and there
has been much prior work on capturing and analyzing provenance
in a variety of communities. However, there is still a lack of prac-
tical systems that treat different kinds of provenance and metadata
information in a unified manner, and that can be easily integrated
in the workflow of a data science project. At the same time, the
widespread use of data science has brought to the forefront several
important and crucial challenges, such as ethics, transparency, re-
producibility, etc., and we posit that fine-granularity provenance is
a key to addressing those challenges.

There are however several crucial systems and conceptual chal-
lenges that must be addressed to fully exploit those opportunities.
Next, we briefly discuss those challenges, and how we address them
in our prototype implementation, called PROVDB. First, it is hard
to define a schema for the provenance/metadata information a pri-
ori, and different users or different workflows may wish to capture
and analyze different types of such data. Instead of requiring a
specific schema, we advocate a “schema-later” approach, where a
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small base schema is fixed, but users can add arbitrary semistruc-
tured information (in JSON or equivalent formats) for recording
additional metadata. The specific data model we use generalizes
and refines a data model proposed in our prior work [7], and al-
lows flexibly capturing a variety of different types of information
including versioning and provenance information, parameters used
during experiments or modeling, statistics gathered to make de-
cision, analysis scripts, notes or tags, etc. In our prototype imple-
mentation, we map this logical data model to a property graph data
model, and use the Neo4j graph database to store the information.

Second, we must be able to capture the information with minimal
involvement from the users, otherwise the system is unlikely to be
used in practice. To address this, PROVDB features a suite of exten-
sible provenance ingestion mechanisms. The currently supported
mechanisms target the scenario where the user primarily interacts
with the system using a UNIX Shell. The shell commands run
by the users to manipulate files or datasets are intercepted, and an-
alyzed using a collection of ingestors. These ingestors can analyze
the before- and after-state of the artifacts to generate rich metadata;
several such ingestors are already supported and new ingestors can
be easily registered for specific commands. For example, such an
ingestion program is used to analyze log files generated by Caffe (a
deep learning framework) and generate metadata about accuracy
and loss metrics (for learned models) in a fine-grained manner.
PROVDB also supports the notion of file views, where users can
define file transformations (either as shell commands or simplified
SQL); this functionality not only simplifies some transformation
tasks (e.g., specifying training/testing splits or sub-sampling), but
also allows us to capture fine-grained record-level dependencies.

Third, and perhaps conceptually the most difficult, challenge is
to develop declarative abstractions to make it easy to exploit this
data. There are many potential ways to use such data including: (a)
explanation queries where we are looking for origins of a piece of
data, (b) introspection queries that attempt to identify flaws with
the data science process (e.g., p-value hacking), (c) continuous
monitoring to identify issues during deployment of a data science
pipeline (e.g., concept drifts where a learned model doesn’t fit new
data; changes to input data formats), and many others. We are
working on developing and supporting a high-level DSL that en-
ables a large range of such queries; however, formalizing some of
these queries (e.g., identifying p-value hacking, or ethics issues)
itself is a major challenge. Our prototype PROVDB implementa-
tion features a web browser-based visualization tool for inspecting
and querying the provenance information, that supports a collec-
tion of pre-defined queries; it also supports querying the informa-
tion directly using Cypher, the Neo4j query language. It supports a
limited form of continuous monitoring, where a user can specify a
constraint to be monitored over a set of properties of artifacts.

Finally, we expect many efficiency and optimization issues that
will arise as the volume of the captured data increases. This is es-
pecially expected to be an issue with the record-level provenance
information; even the “versioning” information can be quite large
because of what we call “implicit” versions, that are generated ev-
ery time a provenance capture is initiated.

PROVDB is being developed in conjunction with DataHub [3],
a dataset-centric platform for enabling collaborative data analytics
that supports managing a large number of datasets, their versions
over time, and derived data products. A prior paper [7] described an
initial proposal for a query language for unified querying of prove-
nance and versioning information, but did not have an implementa-
tion, and did not discuss the issues of how provenance information
may be captured and the rich introspective analysis that may be
performed on such information. The current PROVDB prototype is

built on top of git, widely used by data scientists due to its intuitive
support for collaboration, and Neo4j, a graph database system. As
DataHub matures, we plan to integrate PROVDB with it in future.
Outline: We begin with discussing closely related work and putting
our work in context of that in Sec. 2. We then present PROVDB
system architecture (Sec. 3) and its data model (Sec. 4), followed
by a discussion of provenance ingestion mechanisms that it sup-
ports (Sec. 5). We then discuss the types of analyses that PROVDB
enables and the web browser-based visualization tool (Sec. 6).

2. PRIOR WORK
There has been much work on scientific workflow systems over

the years, with some of the prominent systems being Kepler [29],
Taverna [33], Galaxy [15], iPlant [16], VisTrails [2], Chimera [12],
Pegasus [11], to name a few These systems often center around
creating, automating, and monitoring a well-defined workflow or
data analysis pipeline. But they cannot easily handle fast-changing
pipelines, and typically are not suitable for ad hoc collaborative
data science workflows where clear established pipelines may not
exist except in the final, stable versions. Moreover, these systems
typically do not support the entire range of tools or systems that
the users may want to use, they impose a high overhead on the
user time and can substantially increase the development time, and
often require using specific computational environment. Further,
many of these systems require centralized storage and computation,
which may not be an option for large datasets.

Many researchers find version control systems (e.g., git, svn)
and hosted platforms built around them (e.g., GitHub, GitLab) much
more appropriate for their day-to-day needs. These systems pro-
vide transparent support for versioning and sharing, while imposing
no constraints on what types of tools can be used for the data pro-
cessing itself. Though these systems keep version lineage among
committed artifacts, these systems are typically too “low-level”,
and have very little support for capturing higher-level workflows
or for keeping track of the operations being performed or any kind
of provenance information. The versioning API supported by these
systems is based on a notion of files, and is not capable of allowing
data researchers to reason about data contained within versions and
the relationships between the versions in a holistic manner. Our
proposed system can be seen as providing rich introspection and
querying capabilities those systems lack. A wide range of analytic
packages like SAS [51], Excel [40], R [50], Matlab [48], and Ma-
hout [39], or data science toolkits such as IPython [38], Scikit [42],
and Pandas [41], are frequently used for performing analysis itself;
however, those lack comprehensive data management or collabora-
tion capabilities.

There has been significant interest in developing general-purpose
systems for handling different aspects of “model lifecycle manage-
ment” in recent years. Much of that work has focused on the “train-
ing” aspect; several general-purpose systems like GraphLab, Ten-
sorFlow, Parameter Server, etc., have been designed over the years,
and there is also much work on specific aspects of ML pipeline
(e.g., feature engineering [55]. Several recent systems have at-
tempted to address end-to-end issues, including model serving (e.g.,
TensorFlow Serving, Velox [9], MSMS [27], ModelDB [52]). Our
work, to a large extent, is complementary to that work; our focus is
on the lifecycle management when a data-driven project team con-
sisting of data analysts/scientists at different skill levels are trying
to collaboratively develop a model. PROVDB can be used as the
provenance data management layer for most such systems.

There has also been much work on provenance, with increasing
interest in the recent years. Provenance can be captured at different
granularities, and at different levels of detail. In scientific workflow



systems [1, 2, 12, 13, 13, 14, 29, 33, 35, 36, 54] where the operations
are typically treated as black boxes, the provenance can usually
be captured only at the level of datasets. Workflow provenance
may include: a) prospective information about the definition of the
workflow, b) retrospective information during the execution of the
workflow, c) metadata about blocks and datasets in a workflow, and
d) input/output lineages among blocks [56]. On the other hand, in
dataflow systems where the operators are written in a declarative
language (e.g., SQL, Pig Latin, Spark), data provenance at record
level can be captured if needed [5,6,8,10,17,22,31,53]. Our work
aims to combine the two together with version lineages captured by
VCS, and provide uniform platform for collaborative data science
workflows. Our work is complementary to, and can utilize, those
prior techniques to capture the provenance information itself; our
focus is primarily on how to exploit that information for providing
richer introspection capabilities.

Several systems have been designed that focus on specific as-
pects of the proposed work, including collaborative data manage-
ment (e.g., Fusion tables [30], Orchestra [23], CQMS [20,26], Lab-
Book [24]), data sharing (e.g., SQLShare [19,20,21], SMILE [34]),
hosted data repositories accessible to applications (CKAN [37],
Domo [46]), hosted data science (Domino [45]), as well as data
publishing tools (Quandl [49], Factual [47], DataMarket [44]). None
of them, however, aim to capture a broad range of metadata and
provenance information in a unified fashion, to support high-level
analysis and reasoning over data science pipelines.

LabBook [24] has somewhat similar goals, and also uses a prop-
erty graph to manage metadata captured during collaborative ana-
lytics and features web-based apps architecture for analyzing the
metadata. However, LabBook does not treat “versioning” as a first-
class construct, and does not focus on developing passive prove-
nance ingestion mechanisms or sophisticated querying abstractions
as we do here. GOODS [18] is a dataset management system,
that passively extracts metadata information from a large number
of datasets within an enterprise, and allows users to find, monitor,
and analyze datasets. Although it shares our philosophy of pas-
sive collection of metadata, the types of metadata collected and the
analyses performed are vastly different.

3. SYSTEM ARCHITECTURE
PROVDB is a stand-alone system, designed to be used in con-

junction with a dataset version control system (DVCS) like git
or DataHub (Figure 1). The DVCS will handle the actual ver-
sion management tasks, including supporting the standard check-
out, commit, merge, etc., functionality, and the distributed and de-
centralized management of individual repositories.

We envision a number of local DVCS “repositories”, each cor-
responding to a team of researchers collaborating closely together.
The contents of each repository will typically be replicated across a
number of machines as different researchers “check out” the repos-
itory contents to work on them. Since we leverage git for keeping
these in sync, the repository contents are available as files for the
users to operate upon; the users can run whichever analysis tools
they want on those after checking them out, including distributed
toolkits like Hadoop or Spark.

A repository consists of a set of versions. A version, identified
by an ID, is immutable and any update to a version conceptually
results in a new version with a different version ID (physical data
structures are typically not immutable and the underlying DVCS
uses various strategies for compact storage [4]). New versions can
also be created through the application of transformation programs
to one or more existing versions. The version-level provenance that
captures these processes is maintained as a “version graph”, a di-

DVCS Versioning Module

Raw Data: Versioned Datasets, 
Models, Analysis Scripts

A local DVCS repository

Metadata: Version graph, 
Storage graph (delta-chains)

ProvDB Data Collection 
Layer

A Global ProvDB Instance

Metadata and Provenance: Version graph, 
View definitions, Dataset-level properties 
and annotations, Analyzed scripts

Visual 
Frontend

Query Execution Engine

Continuous Real-time 
Analytics

Figure 1: High-level System Architecture: a single PROVDB in-
stance will manage the provenance and metadata information for a
collaborative team, using a Neo4j instance to store data (not shown)
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Figure 2: Conceptual Data Model

rected acyclic graph with versions as nodes. Typically, the leaves of
the version graph correspond to different live branches that differ-
ent users may be operating upon at the same time. As we discuss in
the next section, PROVDB actually maintains a conceptual “work-
flow graph” with many other types of nodes and edges.

Broadly, the data maintained across the system can be catego-
rized into: (a) raw data that the users can directly access and an-
alyze including the datasets, analysis scripts, and any derived arti-
facts such as trained models, and (b) metadata or provenance in-
formation transparently maintained by the system, and used for
answering queries over the versioning or provenance information.
Fine-grained record-level provenance information may or may not
be directly accessible to the users depending on the ingest mech-
anism used. Note that, the split design that we have chosen to
pursue requires duplication of some information in the DVCS and
PROVDB. We believe this is a small price to pay for the benefits of
having a standalone provenance management system.

PROVDB Data Collection Layer is a thin layer on top of the
DVCS (in our case, git) that is used to capture the provenance
and metadata information. This layer needs to support a variety of
functionality to make it easy to collect a large amount of meta-
data and provenance information, with minimal overhead to the
user (Sec. 5). The PROVDB instance itself is a separate process,
and currently uses the Neo4j graph database to store the data; we
chose Neo4j because of its support for the flexible property graph
data model, and graph querying functionality out-of-the-box (Sec.
4). The data stored inside PROVDB can be accessed either through
the Neo4j frontend, or through a visual frontend that we have built
that supports a variety of provenance queries (Sec. 6).
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Figure 3: An example workflow and the corresponding PROVDB property graph

4. DATA MODEL
To encompass a large variety of situations, our goal was to have a

flexible data model that reflects versioning and workflow pipelines,
and supports addition of arbitrary metadata or provenance infor-
mation. As such, we use fixed “base schema” (Figure 2) to capture
the information about the versions, the different data artifacts, and
so on, while allowing arbitrary properties to be added to the vari-
ous entities. We map this logical data model to a property graph
model (Figure 3(b)), which we use as our physical data model. Our
model differs from the other similar models proposed in the past
work [24, 56] primarily in the explicit modeling of versions.

Conceptual Data Model: We view a data science project as a work-
ing directory with a set of artifacts (files), and a development life-
cycle as a series actions (shell commands, edits, transformation
programs) which perform create/read/update/delete (CRUD) oper-
ations in the working directory.

More specifically: an artifact is a file, which the user modifies,
runs, and talks about with peers. Artifacts can be tagged as belong-
ing to one of three different types: ResultFile, DataFile, ScriptFile,
which helps with formulating appropriate queries. A version is
a checkpoint of the project; in our case, this refers to a physical
commit created via git. PROVDB has explicit versions and im-
plicit versions; the former are created when a user explicitly issues
commit command, whereas the latter are created at provenance in-
gestion time when the user runs commands in the project directory.

Snapshots are checkpointed versions of an artifact, and capture
its evolution. PROVDB monitors file changes during the lifecycle,
and emits changed (CUD) artifacts as new snapshots, and the pre-
vious snapshot of the same artifact before the change is called its
parent. The content of a snapshot are modeled as records, to allow
fine-grained record-level provenance (some files, e.g., binary files,
would be modeled as having a single record).

Derivations capture the transformation context to the extent pos-
sible. If a derivation is performed by running a program or a script,
then the information about it is captured along with any arguments.
Derivation edges may also be created when the system notices that
one or more artifacts have changed (e.g., an edit made using an
editor, or a script ran outside the PROVDB context).

Finally, properties are used to encode any additional informa-
tion about the snapshots or the derivations, as key-value pairs (where
values are often time series or JSON documents themselves). Prove-
nance ingestion tools (discussed in next section) will generate these
properties. In addition to the information about programs or scripts
and their arguments, properties may include any information cap-
tured by parsing shell scripts or analysis scripts themselves. Prop-

erties are also used to extract statistics about the data within the
snapshots as well, so that they can be seamlessly queried. This
starts blurring the distinction between data and metadata to some
extent; we plan to investigate using a more elaborate data model
that more clearly delineates between the two in future.
Physical Property Graph Data Model: We map the logical data
model (with the exception of Record) above into a property graph
data model, primarily to enable graph traversal queries and visual
exploration over the stored information easily. Nodes of the prop-
erty graph are of types Version, Artifact, etc., whereas the edges
capture the parent-child relationships (Figure 3 shows an example).

5. PROVENANCE INGESTION
PROVDB captures provenance information or other metadata op-

portunistically, and features a suite of mechanisms that can cap-
ture provenance for different types of operations. Users can eas-
ily add provenance ingestion mechanisms, to both capture more
types of information as well as richer information. Here we briefly
enumerate the ingestion mechanisms that PROVDB currently sup-
ports, which include a general-purpose UNIX shell-based inges-
tion framework, ingestion of DVCS versioning information, and
a mechanism called file views which is intended to both simplify
workflow and aid in fine-grained provenance capture.
Shell command-based Ingestion Framework: The provenance in-
gestion framework is centered around the UNIX commandline shell
(e.g., bash, zsh, etc). We provide a special command called provdb
that users can prefix to any other command, and that triggers prove-
nance ingestion. Each run of the command results in creation of a
new implicit version, which allows us to capture the changes at a
fine granularity. These implicit versions are kept separate from the
explicit versions created by a user through use of git commit, and
are not visible to the users. A collection of ingestors is invoked by
matching the command against a set of regular expressions, regis-
tered a priori along with the ingestors. PROVDB schedules ingestor
to run before/during/after execution the user command, and expects
the ingestor to return a JSON property graph consisting of a set of
key-value pairs denoting properties of the snapshots or derivations.
An ingestor can also provide record-level provenance information,
if it is able to generate such information.

A default ingestor handles abitrary commands by parsing them
following POSIX standard (IEEE 1003.1-2001) to annotate utility,
options, option arguments and operands. For example, mkdir -p
dir is parsed as utility mkdir, option p and operand dir. Concatena-
tions of commands are decomposed and ingested separately, while
a command with pipes is treated as a single command. If an ex-



ternal tool has been used to make any edits (e.g., a text editor), an
implicit version is created next time provdb is run, and the deriva-
tion information is recorded as missing.

PROVDB also supports several specialized ingestion plugins and
configurations to cover important data science workflows. In par-
ticular, it has an ingestor capable of ingesting provenance informa-
tion from runs of the Caffe deep learning framework; it not only
ingests the learning hyperparameters from the configuration file,
but also the accuracy and loss scores by iteration from the result
logging file. We are currently working on incorporating parsers
for scripts written in popular data science tools such as Jupyter,
scikit-learn and pandas, by building upon prior work [32].

User Annotations: Apart from plugin framework, PROVDB GUI
allows users to organize, add, and annotate properties, along with
other query facilities. The user can annotate project properties,
such as usage descriptions for collaborations on artifacts, or notes
to explain rationale for a particular derivation. A user can also an-
notate a property as parameter and add range/step to its domains,
which turns a derivation into a template and enables batch run of an
experiment. For example, a grid search of a template derivation on
a start snapshot can be configured directly in the UI. Maintaining
such user annotations (and file views discussed next) as the datasets
evolve is a complicated issue in itself [25].

File Views: PROVDB provides a functionality called file views to
assist dataset transformations and to ingest provenance among data
files. Analogous to views in relational databases, a file view defines
a virtual file as a transformation over an existing file. A file view
can be defined either: (a) as a script or a sequence of commands
(e.g., sort | uniq -c, which is equivalent to an aggregate count
view), or (b) as an SQL query where the input files are treated as
tables. For instance, the following query counts the rows per label
that a classifier predicts wrongly comparing with ground truth.
provdb fileview -c -n=’results.csv’ -q=’

select t._c2 as label, count(*) as err_cnt
from {testfile.csv} as t, {predfile.csv} as r
where t._c0 = r._c0 and t._c2 != r._c2 group by t._c2’

The SQL feature is implemented by loading the input files into an
in-memory sqlite database and executing the query against it.
Instead of creating a view, the same syntax can be used for creating
a new file instead, saving a user from coding similar functionality.

File views serves as an example of a functionality that can help
make the ad hoc process of data science more structured. Aside
from making it easier to track dependencies, SQL-based file views
also enable capturing record-level provenance by drawing upon
techniques developed over the years for provenance in databases.

Discussion: Current PROVDB prototype is designed to be used in
a command-line environment. In future work, we plan to inves-
tigate how to provide tools for capturing provenance within other
development environments such as different IDEs. We also plan to
incorporate support for ingesting provenance through parsing log
files generated in many environments today, and through continu-
ous monitoring of the artifacts in the working directory.

6. QUERY AND ANALYSIS FACILITIES
The major data management research challenges in building a

system like PROVDB revolve around querying, analyzing, and ex-
tracting insights from the rich provenance information collected us-
ing the mechanisms described so far. In addition to standard prove-
nance queries, PROVDB also enables asking deeper, introspective
questions about the data science processes and pipelines, and for-
malizing those is a major challenge in itself. PROVDB can also
naturally support monitoring queries, which can be used to auto-

matically detect problems during deployment. We hope that build-
ing the basic infrastructure to collect and expose the information
will allow other researchers and data scientists to start formulating
such questions more easily. Developing a higher-level query lan-
guage also remains a major challenge; although we proposed an
initial design of a query language in our prior work [7], it does not
support querying over workflow derivations or analysis artifacts.

One major challenge that we do not discuss further here has to do
with efficiency; in real deployments with large collaboration teams,
a large amount of provenance information may be collected that
will likely overwhelm a single, centralized instance (especially if
record-level provenance information is collected). New techniques
for compressing the information, and maintaining the information
in a distributed manner would need to be developed.

In the rest of this section, we briefly discuss the different types
of queries or analyses that may be performed on the provenance
information, and what our current prototype supports.
Queries over Version/Workflow Graph and Properties: In a col-
laborative workflow, provenance queries to identify what revision
and which author last modified a line in an artifact are common
(e.g., git blame). PROVDB allows such queries at various lev-
els (version, artifact, snapshot, record) and also allows querying
the properties associated with the different entities (e.g., details of
what parameters have been used, temporal orders of commands,
etc). In fact, all the information exposed in the property graph can
be directly queried using the Neo4j Cypher query language, which
supports graph traversal queries and aggregation queries.

The latter types of queries are primarily limited by the amount of
context and properties that can be automatically ingested. PROVDB
currently supports ingestors for several popular frameworks, in-
cluding a program analysis ingestor for scikit-learn which extracts
the scikit-learn APIs used in a program, and a hyper-parameter
and result-table ingestor for caffe for deep learning (the hyper-
parameter ingestor extracts experiment parameter metadata from
caffe commands and arguments, while the results-table ingestor ex-
tracts optimization errors and accuracy metrics from training logs).
Availability of this information allows users to ask more meaning-
ful queries like: what scikit-learn script files contain a specific se-
quence of commands; what is the learning accuracy curve of a caffe
model artifact; enumerate all different parameter combinations that
have been tried out for a given learning task, and so on.

Many such queries naturally result in one or more time series of
values (e.g., properties of an artifact over time as it evolves, results
of “diff” queries discussed below); PROVDB supports a uniform
visual interface for plotting such time series data, and comparing
two different time series (see below for an example).
Shallow vs Deep “Diff” Queries: “Diff” is a first-class operator in
PROVDB, and can be used for finding differences at various differ-
ent levels. Specifically, given a pair of nodes (corresponding to
two snapshots) in the property graph, a shallow diff operation, by
default, focuses on the ingested properties of the two snapshots,
which are likely to contain the crucial differences in most cases. It
attempts to “join” the two sets of properties as best as it can, and
highlights the differences; in case of time-series properties, it also
allows users to generate plots so they can more easily understand
the differences. For example, for two result table artifacts that may
represent the outputs of two different runs of the same script (e.g.,
model training logs), a line-by-line diff may be useless because of
irrelevant and minor numerical differences; however, by plotting
the two sets of results against each other, a user can more quickly
spot important trends (e.g., that a specific value of parameter leads
to quicker convergence). The shallow diff operator also allows dif-
ferencing the contents of the two files line-by-line if so desired.



(a) Diff Artifacts (Result logging files for two deep neural networks) (b) Cypher Query to Find Related Changes via Derivations

Figure 4: Illustration of PROVDB interfaces

A deep diff compares the ancestors of the two target snapshots
by tracing back their derivations to the common ancestor. It aligns
the snapshots along the two paths, and shows the differences be-
tween each pair of aligned snapshots. For example, in a prediction
workflow, a user may have tried out different prediction models and
configurations to identify the best model; using PROVDB, she can
start from two result table artifacts, and ask a deep diff query to
compare how they are derived.

Record Provenance Queries: Although the PROVDB data model
supports storing fine-grained record-level provenance information,
it currently does not have an ingestor that generates such data; we
are working on adding several such ingestors, including ones for
SQL-based file views or transformations, and for common data
cleaning or similar operations where record-level provenance can
be easily inferred. Given such information, record-level prove-
nance queries are conceptually straightforward. However, the main
challenge is expected to be the large volume of provenance infor-
mation as well as efficient query execution. We plan to investi-
gate approximate (lossy) provenance storage mechanisms to ad-
dress these challenges. The utility of these queries may also be
limited because it is difficult to collect fine-grained provenance for
many black-box operations (e.g., machine learning models). De-
veloping techniques to do so remains a rich area for further work.

Reasoning about Pipelines: Similar to a workflow management
system, we define a pipeline to be a sequence of derivation edges.
A pipeline can be annotated by the user by browsing the work-
flow graph and marking the start and the end edges of the pipeline.
Pipelines can also be inferred automatically by the system (e.g., via
pattern mining techniques). PROVDB UI allows a user to browse
and reuse pipelines present in the system; in future, we also plan to
add support for re-invoking an old pipeline on an old artifact to ver-
ify the results, or invoking a pipeline on a different snapshot with
different parameters, or schedule a cron job. Being able to reason
about pipelines has the potential to hugely simplify the lives of data
scientists, by allowing them to learn from others and also helping
them avoid mistakes (e.g., omission of a crucial intermediate step).

Continuous Monitoring or Anomaly Detection: On ingested prop-
erties of artifacts and derivations, PROVDB provides a monitoring
and alerting subsystem to aid the user during the development life-
cycle. We envision two main use cases for this functionality. (a)

First, it can be used to detect any major changes to the properties
of an evolving dataset – e.g., a large change in the distribution of
values in a dataset may be cause for taking remedial action. (b)
Second, in most applications, there is usually a need to “deploy” an
analysis script or a trained model against live incoming data; it is
important to keep track of how well the model or the script is be-
having and catch any problems as soon as possible (e.g., changing
input data properties; higher error rates than expected). Currently
even if systems like Spark Streaming or Apache Storm can be used
to execute a script against new data in a streaming fashion, there is
no built-in support for the introspection tasks. Newer systems like
Google TensorFlow Serving also facilitate the deployment process,
but do not support introspection. Such introspection can be seen as
continuous queries against streaming provenance information.

PROVDB supports analysis of historical data (as described above)
and simple alert queries that can monitor a property of an evolv-
ing artifact. In our current prototype, both of these must be done
through the web dashboard UI; in future iterations of PROVDB, we
plan to support more complex temporal queries (that can monitor
properties across snapshots) and we plan to support executing those
continuously as new versions (implicit or explicit) are checked in.

Illustrative Example: Figure 4 shows the PROVDB Web GUI us-
ing a caffe deep learning project. In this project, 41 deep neural
networks are created for a face classification task. The user tries
out models by editing and training models. In Fig 4(a), an intro-
spection query asks how different are two trained models (model-0
and 9). Using the GUI, the user filters artifacts, and diffs their result
logging files. In the right side query result pane, the ingested prop-
erties are diffed. The caffe ingestor properties are numerical time
series; using the provided charting tool, the user plots the training
loss and accuracy against the iteration number. From the results, we
can see that model-9 does not train well in the beginning, but ends
up with similar accuracy. To understand why, a deep diff between
the two can be issued in the GUI and complex Cypher queries can
be used as well. In Fig. 4(b), the query finds previous derivations
and shared snapshots, which are training config files; more intro-
spection can be done by finding changed hyperparameters.

7. CONCLUSION
In this paper, we presented our vision for a system to simplify



lifecycle management of ad hoc, collaborative analysis workflows
that are becoming prevalent in most application domains today. We
argued that a large amount of provenance and metadata informa-
tion can be captured passively, and analyzing that information in
novel ways can immensely simplify the day-to-day processes un-
dertaken by data analysts. We have built an initial prototype using
git and Neo4j, which provides a variety of provenance ingestion
mechanisms and the ability to query, analyze, and monitor the cap-
tured provenance information. Our initial experience with using
this prototype for a deep learning workflow (for a computer vision
task) shows that even with limited functionality, it can simplify the
bookkeeping tasks and make it easy to compare the effects of dif-
ferent hyperparameters and neural network structures. However,
many interesting and hard systems and conceptual challenges re-
main to be addressed in capturing and exploiting such information
to its fullest extent.
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