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Abstract Profiling data to determine metadata about

a given dataset is an important and frequent activity

of any IT professional and researcher, and is necessary

for various use-cases. It encompasses a vast array of

methods to examine datasets and produce metadata.

Among the simpler results are statistics, such as the

number of null values and distinct values in a column,

its data type, or the most frequent patterns of its data

values. Metadata that are more difficult to compute

involve multiple columns, namely correlations, unique

column combinations, functional dependencies, and in-

clusion dependencies. Further techniques detect condi-

tional properties of the dataset at hand.

This survey provides a classification of data profil-

ing tasks and comprehensively reviews the state of the

art for each class. In addition, we review data profil-
ing tools and systems from research and industry. We

conclude with an outlook on the future of data profiling

beyond traditional profiling tasks and beyond relational

databases.

1 Data Profiling: Finding Metadata

Data profiling is the set of activities and processes to

determine the metadata about a given dataset. Profil-
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ing data is an important and frequent activity of any IT

professional and researcher. We can safely assume that

any reader of this article has engaged in the activity

of data profiling, at least by eye-balling spreadsheets,

database tables, XML files, etc. Possibly more advanced

techniques were used, such as keyword-searching in

datasets, writing structured queries, or even using ded-

icated data profiling tools.

Johnson gives the following definition: “Data profil-

ing refers to the activity of creating small but informa-

tive summaries of a database” [79]. Data profiling en-

compasses a vast array of methods to examine datasets

and produce metadata. Among the simpler results are

statistics, such as the number of null values and distinct

values in a column, its data type, or the most frequent

patterns of its data values. Metadata that are more dif-

ficult to compute involve multiple columns, such as in-

clusion dependencies or functional dependencies. Also

of practical interest are approximate versions of these

dependencies, in particular because they are typically

more efficient to compute. In this survey we preclude

these and concentrate on exact methods.

Like many data management tasks, data profiling

faces three challenges: (i) managing the input, (ii) per-

forming the computation, and (iii) managing the out-

put. Apart from typical data formatting issues, the first

challenge addresses the problem of specifying the ex-

pected outcome, i.e., determining which profiling tasks

to execute on which parts of the data. In fact, many

tools require a precise specification of what to inspect.

Other approaches are more open and perform a wider

range of tasks, discovering all metadata automatically.

The second challenge is the main focus of this sur-

vey and that of most research in the area of data pro-

filing: The computational complexity of data profiling

algorithms depends on the number or rows, with a sort
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being a typical operation, but also on the number of

columns. Many tasks need to inspect all column com-

binations, i.e., they are exponential in the number of

columns. In addition, the scalability of data profiling

methods is important, as the ever-growing data vol-

umes demand disk-based and distributed processing.

The third challenge is arguably the most difficult,

namely meaningfully interpreting the data profiling re-

sults. Obviously, any discovered metadata refer only to

the given data instance and cannot be used to derive

schematic/semantic properties with certainty, such as

value domains, primary keys, or foreign key relation-

ships. Thus, profiling results need interpretation, which

is usually performed by database and domain experts.

Tools and algorithms have tackled these challenges

in different ways. First, many rely on the capabilities of

the underlying DBMS, as many profiling tasks can be

expressed as SQL queries. Second, many have developed

innovative ways to handle the individual challenges, for

instance using indexing schemes, parallel processing,

and reusing intermediate results. Third, several meth-

ods have been proposed that deliver only approximate

results for various profiling tasks, for instance by pro-

filing samples. Finally, users may be asked to narrow

down the discovery process to certain columns or ta-

bles. For instance, there are tools that verify inclusion

dependencies on user-suggested pairs of columns, but

cannot automatically check inclusion between all pairs

of columns or column sets.

Systematic data profiling, i.e., profiling beyond

the occasional exploratory SQL query or spreadsheet

browsing, is usually performed with dedicated tools or

components, such as IBM’s Information Analyzer, Mi-

crosoft’s SQL Server Integration Services (SSIS), or In-

formatica’s Data Explorer1. These approaches follow

the same general procedure: A user specifies the data

to be profiled and selects the types of metadata to be

generated. Next, the tool computes the metadata in

batch-mode, using SQL queries and/or specialized al-

gorithms. Depending on the volume of the data and

the selected profiling results, this step can last minutes

to hours. Results are usually displayed in a vast collec-

tion of tabs, tables, charts, and other visualizations to

be explored by the user. Typically, discoveries can then

be translated to constraints or rules that are then en-

forced in a subsequent cleansing/integration phase. For

instance, after discovering that the most frequent pat-

tern for phone numbers is (ddd)ddd-dddd, this pattern

can be promoted to a rule stating that all phone num-

bers must be formatted accordingly. Most data cleans-

ing tools can then either transform differently format-

ted numbers or mark them as improper.

1 See Section 6 for a more comprehensive list of tools.

We focus our discussion on relational data, the pre-

dominant format of traditional data profiling methods,

but we do cover data profiling for other data models in

Section 7.2.

1.1 Use cases for data profiling

Data profiling has many traditional use cases, including

the data exploration, data cleansing, and data integra-

tion scenarios. Statistics about data are also useful in

query optimization. Finally we describe several domain-

specific use cases, such as scientific data management

and big data analytics.

Data exploration. Database administrators, research-

ers, and developers are often confronted with new data-

sets, about which they know nothing. Examples in-

clude data files downloaded from the Web, old database

dumps, or newly gained access to some DBMS. In many

cases, such data have no known schema, no or old doc-

umentation, etc. Even if a formal schema is specified,

it might be incomplete, for instance specifying only the

primary keys but no foreign keys. A natural first step

is to understand how the data is structured, what it is

about, and how much of it there is.

Such manual data exploration, or data gazing2, can

and should be supported with data profiling techniques.

Simple, ad-hoc SQL queries can reveal some insight,

such as the number of distinct values, but more so-

phisticated methods are needed to efficiently and sys-

tematically discover metadata. Furthermore, we can-

not always expect an SQL expert as the explorer, but

rather “data enthusiasts” without formal computer sci-

ence training [68]. Thus, automated data profiling is

needed to provide a basis for further analysis. Morton et

al. recognize that a key challenge is overcoming the cur-

rent assumption of data exploration tools that data is

“clean and in a well-structured relational format” [107].

Often data cannot be analyzed and visualized as-is.

Database management. A basic form of data profiling is

the analysis of individual columns in a given table. Typ-

ically, the generated metadata include various counts,

such as the number of values, the number of unique

values, and the number of non-null values. These meta-

data are often part of the basic statistics gathered by

a DBMS. An optimizer uses them to estimate the se-

lectivity of operators and perform other optimization

steps. Mannino et al. give a survey of statistics collec-

tion and its relationship to database optimization [99].

2 “Data gazing involves looking at the data and trying to re-
construct a story behind these data. [. . . ] Data gazing mostly
uses deduction and common sense.” [104]
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More advanced techniques use histograms of value dis-

tributions, functional dependencies, and unique column

combinations to optimize range-queries [118] or for dy-

namic reoptimization [80].

Database reverse engineering. Given a “bare” database

instance, the task of schema and database reverse en-

gineering is to identify its relations and attributes, as

well as domain semantics, such as foreign keys and car-

dinalities [103, 116]. Hainaut et al. call these metadata

“implicit constructs”, i.e., those that are not explic-

itly specified by DDL statements [66]. However, possi-

ble sources for reverse engineering are DDL statements,

data instances, data dictionaries, etc. The result of re-

verse engineering might be an entity-relationship model

or a logical schema to assist experts in maintaining, in-

tegrating, and querying the database.

Data integration. Often, the datasets to be integrated

are unfamiliar and the integration expert wants to ex-

plore the datasets first: How large are they, what data

types are needed, what are the semantics of columns

and tables, are there dependencies between tables and

among databases, etc.? The vast abundance of (linked)

open data and the desire and potential to integrate

them with local data has amplified this need.

A concrete use-case for data profiling is that of

schema matching, i.e., finding semantically correct cor-

respondences between elements of two schemata [44].

Many schema matching systems perform data profiling

to create attribute features, such as data type, aver-

age value length, patterns, etc., to compare feature vec-

tors and align those attributes with the best matching

ones [98,109].

Scientific data management and integration have

created additional motivation for efficient and effective

data profiling: When importing raw data, e.g., from sci-

entific experiments or extracted from the Web, into a

DBMS, it is often necessary and useful to profile the

data and then devise an adequate schema. In many

cases, scientific data is produced by non-database ex-

perts and without the intention to enable integration.

Thus, they often come with no adequate schematic in-

formation, such as data types, keys, or foreign keys.

Apart from exploring individual sources, data pro-

filing can also reveal how and how well two datasets

can be integrated. For instance, inclusion dependencies

across tables from different sources suggest which tables

might reasonably be combined with a join-operation.

Additionally, specialized data profiling techniques can

reveal how much two relations overlap in their intent

and extent. We discuss these challenges in Section 7.1.

Data quality / data cleansing. The need to profile a

new or unfamiliar set of data arises in many situations,

in general to prepare for some subsequent task. A typ-

ical use case is profiling data to prepare a data cleans-

ing process. Commercial data profiling tools are usually

bundled with corresponding data quality / data cleans-

ing software.

Profiling as a data quality assessment tool reveals

data errors, such as inconsistent formatting within a

column, missing values, or outliers. Profiling results can

also be used to measure and monitor the general quality

of a dataset, for instance by determining the number of

records that do not conform to previously established

constraints [81,117]. Generated constraints and depen-

dencies also allow for rule-based data imputation.

Big data analytics. “Big data”, with its high volume,

high velocity, and high variety [90], is data that can-

not be managed with traditional techniques. Thus, data

profiling gains a new importance. Fetching, storing,

querying, and integrating big data is expensive, despite

many modern technologies: before exposing an infras-

tructure to Twitter’s firehose it might be worthwhile

to know about properties of the data one is receiv-

ing; before downloading significant parts of the linked

data cloud, some prior sense of the integration effort is

needed; before augmenting a warehouse with text min-

ing results an understanding of its data quality is re-

quired. In this context, leading researchers have noted

“If we just have a bunch of datasets in a repository, it is

unlikely anyone will ever be able to find, let alone reuse,

any of this data. With adequate metadata, there is some

hope, but even so, challenges will remain[. . . ].” [7]

Many big data and related data science scenarios

call for data mining and machine learning techniques

to explore and mine data. Again, data profiling is an

important preparatory task to determine which data to

mine, how to import it into the various tools, and how

to interpret the results [120].

Further use cases. Knowledge about data types, keys,

foreign keys, and other constraints supports data mod-

eling and helps keep data consistent, improves query op-

timization, and reaps all the other benefits of structured

data management. Others have mentioned query formu-

lation and indexing [126] and scientific discovery [75]

as further motivation for data profiling. Also, compres-

sion techniques internally perform basic data profiling

to optimize the compression ratio. Finally, the areas

of data governance and data life-cycle management are

becoming more and more relevant to businesses trying

to adhere to regulations and code. Especially concerned

are financial institutions and health care organizations.
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Again, data profiling can help ascertain which actions

to take on which data.

1.2 Article overview and contributions

Data profiling is an important and practical topic that

is closely connected to several other data management

areas. It is also a timely topic and is becoming increas-

ingly important given the recent trends in data science

and big data analytics [108]. While it may not yet be

a mainstream term in the database community, there

already exists a large body of work that directly and

indirectly addresses various aspects of data profiling.

The goal of this survey is to classify and describe this

body of work, and illustrate its relevance to database

research and practice. We also show that data profiling

is far from a “done deal” and identify several promising

directions for future work in this area.

The remainder of this paper is organized as follows.

In Section 2, we outline and define data profiling based

on a new taxonomy of profiling tasks. Sections 3, 4,

and 5 survey the state of the art of the three main

research areas in data profiling: analysis of individual

columns, analysis of multiple columns, and detection of

dependencies between columns, respectively. Section 6

surveys data profiling tools from research and industry.

We provide an outlook of data profiling challenges in

Section 7 and conclude this survey in Section 8.

2 Profiling Tasks

This section presents a classification of data profil-

ing tasks. Figure 1 shows our classification, which in-

cludes single-column tasks, multi-column tasks and de-

pendency detection. While dependency detection falls

under multi-column profiling, we chose to assign a sepa-

rate profiling class to this large, complex, and important

set of tasks. The classes are discussed in the following

subsections. We also highlight additional dimensions of

data profiling, such as the type of storage, the approx-

imation of profiling results, as well as the relationship

between data profiling and data mining.

Collectively, a set of results of these tasks is called

the data profile or database profile. In general, we as-

sume the dataset itself as our only input, i.e., we cannot

rely on query logs, schema, documentation, etc.

2.1 Single column profiling

A basic form of data profiling is the analysis of individ-

ual columns in a given table. Typically, the generated
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Fig. 1 A classification of traditional data profiling tasks.

metadata comprises various counts, such as the number

of values, the number of unique values, and the number

of non-null values. These metadata are often part of

the basic statistics gathered by the DBMS. In addition,

the maximum and minimum values are discovered and

the data type is derived (usually restricted to string

vs. numeric vs. date). More advanced techniques cre-

ate histograms of value distributions and identify typ-

ical patterns in the data values in the form of regular

expressions [122]. Data profiling tools display such re-

sults and can suggest actions, such as declaring a col-

umn with only unique values to be a key-candidate or

suggesting to enforce the most frequent patterns. As

another exemplary use-case, query optimizers in data-

base management systems also make heavy use of such

statistics to estimate the cost of an execution plan.

Table 1 lists the possible and typical metadata as

a result of single-column data profiling. Some tasks are

self-evident while others deserve more explanation. In

Section 3, we elaborate on the more interesting tasks,

their implementation, and their use.
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Table 1 Overview of selected single-column profiling tasks (see Section 3 for details).

Category Task Description

Cardinalities num-rows Number of rows
value length Measurements of value lengths (minimum, maximum, median, and average)

null values Number or percentage of null values
distinct Number of distinct values; sometimes called “cardinality”

uniqueness Number of distinct values divided by the number of rows
Value histogram Frequency histograms (equi-width, equi-depth, etc.)
distributions constancy Frequency of most frequent value divided by number of rows

quartiles Three points that divide the (numeric) values into four equal groups
first digit Distribution of first digit in numeric values; to check Benford’s law

Patterns, basic type Generic data type, such as numeric, alphabetic, alphanumeric, date, time
data types, data type Concrete DBMS-specific data type, such as varchar, timestamp, etc.
and domains size Maximum number of digits in numeric values

decimals Maximum number of decimals in numeric values
patterns Histogram of value patterns (Aa9. . . )

data class Semantic, generic data type, such as code, indicator, text, date/time, quantity, identifier
domain Classification of semantic domain, such as credit card, first name, city, phenotype

2.2 Multi-column profiling

The second class of profiling tasks covers multiple

columns simultaneously. Multi-column profiling gen-

eralizes profiling tasks on single columns to multiple

columns and also identifies inter-value dependencies

and column similarities. One task is to identify cor-

relations between values through frequent patterns or

association rules. Furthermore, clustering approaches

that consume values of multiple columns as features

allow for the discovery of coherent subsets of data

records and outliers. Similarly, generating summaries

and sketches of large datasets relates to profiling values

across columns.

Such metadata is useful in many applications, such

as data exploration and analytics. Outlier detection is

used in data cleansing applications, where outliers may

indicate incorrect data values.

Section 4 describes these tasks and techniques in

more detail. It comprises multi-column profiling tasks

that generate meta-data on horizontal partitions of the

data, such as values and records, instead vertical par-

titions, such as columns and column groups. Although

the discovery of column dependencies, such as key or

functional dependency discovery, also relates to multi-

column profiling, we dedicate a separate section to de-

pendency discovery as described next.

2.3 Dependencies

Dependencies are metadata that describe relationships

among columns. The difficulties of automatically de-

tecting such dependencies in a given dataset are two-

fold: First, pairs of columns or larger column-sets must

be examined, and second, the chance existence of a de-

pendency in the data at hand does not imply that this

dependency is meaningful. While much research has

been invested in addressing the first challenge and is

the focus of this survey, there is less work on semanti-

cally interpreting the profiling results.

A common goal of data profiling is to identify suit-

able keys for a given table. Thus, the discovery of unique

column combinations, i.e., sets of columns whose values

uniquely identify rows, is an important data profiling

task [70]. Once unique column combinations have been

discovered, a second step is to identify among them the

intended primary key of a relation.

A frequent real-world use-case of multi-column pro-

filing is the discovery of foreign keys [96, 123] with the

help of inclusion dependencies [14,100]. An inclusion de-

pendency states that all values or value combinations

from one set of columns also appear in the other set of

columns – a prerequisite for a foreign key. Another form

of dependency that is also relevant for data quality is

the functional dependency (Fd). A functional depen-

dency states that values in one set of columns func-

tionally determine the value of another column. Again,

much research has been performed to automatically de-

tect Fds [75,139]. Section 5 surveys dependency discov-

ery algorithms in detail.

Dependencies have many applications: An obvious

use-case for functional dependencies is schema normal-

ization. Inclusion dependencies can suggest how to join

two relations, possibly across data sources. Their condi-

tional counterparts help explore the data by focussing

on certain parts of the dataset.

2.4 Conditional, partial, and approximate solutions

Real datasets usually contain exceptions to rules. To

account for this, dependencies and other constraints de-



6 Ziawasch Abedjan et al.

tected by data profiling can be be relaxed. We describe

two relaxations below: partial and approximate.

Partial dependencies hold for only a subset of the

records, for instance, for 95% of the records or for all but

10 records. Such dependencies are especially valuable in

data cleansing scenarios: they are patterns that hold for

almost all records, and thus should probably hold for

all records if the data were clean. Violating records can

be extracted and cleansed [129].

Once a partial dependency has been detected, it is

interesting to characterize for which records it holds,

i.e., if we can find a condition that selects precisely those

records. Conditional dependencies can specify such con-

ditions. For instance, a conditional unique column com-

bination might state that the column street is unique

for all records with city = ‘NY’. Conditional inclusion

dependencies (Cinds) were proposed by Bravo et al.

for data cleaning and contextual schema matching [19].

Conditional functional dependencies (Cfds) were intro-

duced in [46], also for data cleaning.

Approximate dependencies and other constraints are

unconditional statements, but are not guaranteed to

hold for the entire relation. Such dependencies are often

discovered using sampling [76] or other summarization

techniques [31]. Their approximate nature is often suf-

ficient for certain tasks, and approximate dependencies

can be used as input to the more rigorous task of de-

tecting true dependencies. This survey does not discuss

such approximation techniques.

2.5 Types of storage

Data profiling tasks are applicable to a wide range of

situations in which data are provided in various forms.

For instance, most commercial profiling tools assume

that data reside in a relational database, make use of

SQL queries and indexes. In other situations, for in-

stance, a csv file is provided and a data profiling method

needs to create its own data structures in memory or

on disk. And finally, there are situations in which a

mixed approach is useful: data that were originally in

the database are read once and processed further out-

side the database.

The discussion and distinction of such different sit-

uations is relevant when evaluating the performance of

data profiling algorithms and tools. Can we assume that

data are already loaded into main memory? Can we

assume the presence of indices? Are profiling results,

which can be quite voluminous, written to disk? Fair

comparisons need to establish a level playing field with

same assumptions about data storage.

2.6 Data profiling vs. data mining

A clear, well-defined, and accepted distinction between

data profiling and data mining does not exist. Two cri-

teria are conceivable:

1. Distinction by the object of analysis: Instance vs.

schema or columns vs. rows

2. Distinction by the goal of the task: Description of

existing data vs. new insights beyond existing data.

Following the first criterion, Rahm and Do distin-

guish data profiling from data mining by the number of

columns that are examined: “Data profiling focusses on

the instance analysis of individual attributes. [. . . ] Data

mining helps discover specific data patterns in large

datasets, e.g., relationships holding between several at-

tributes” [121]. While this distinction is well-defined,

we believe several tasks, such as Ind or Fd detection,

belong to data profiling, even if they discover relation-

ships between multiple columns.

We believe a different distinction along both criteria

is more useful: Data profiling gathers technical meta-

data to support data management; data mining and

data analytics discovers non-obvious results to support

business management with new insights. While data

profiling focuses mainly on columns, some data mining

tasks, such as rule discovery or clustering, may also be

used for identifying interesting characteristics of a data

set. Others, such as recommendation or classification,

are not related to data profiling.

With this distinction, we concentrate on data profil-

ing and put aside the broad area of data mining, which

has already received unifying treatment in numerous

textbooks and surveys. However, in Section 4, we ad-

dress the subset of unsupervised mining approaches

that can be applied on unknown data to generate meta-

data and hence, serves the purpose of data profiling.

Classifications of data mining tasks include an over-

view by Chen et al., who distinguish the kinds of data-

bases (relational, OO, temporal, etc.), the kinds of

knowledge to be mined (association rules, clustering,

deviation analysis, etc.), and the kinds of techniques

to be used [130]. We make a similar distinction in

this survey. In particular, we distinguish the different

classes of data profiling tasks and then examine vari-

ous techniques to perform them. We discuss profiling

non-relational data in Section 7.

2.7 Summary

We summarize this section by connecting the various

data profiling tasks with the use cases mentioned in the

introduction. Conceivably, any task can be useful for
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any use-case, depending on the context, the properties

of the data at hand, etc. Table 2 lists the profiling tasks

and their primary use cases.

3 Column Analysis

The analysis of the values of individual columns is usu-

ally a straightforward task. Table 1 lists the typical

metadata that can determined for a given column. The

following sections describe each category of tasks in

more detail, mentioning possible uses of the respective

results. In [104], a book addressing practitioners, sev-

eral of these tasks are discussed in more detail.

3.1 Cardinalities

Cardinalities or counts of values in a column are the

most basic form of metadata. The number of rows in a

table (num-rows) reflects how many entities (e.g., cus-
tomers, orders, items) are represented in the data, and

it is relevant to data management systems, for instance

to estimate query costs or to assign storage space.

Information about the length of values in terms of

characters (value-length), including the length of the

longest and shortest value and the average length, is

useful for schema reverse-engineering (e.g., to determine

tight data type bounds), outlier detection (e.g., single-

character first names), and formatting (dates have the

same min-, max- and average length).

The number of empty cells, i.e., cells with null val-

ues or empty strings (null-values), indicates the (in-

)completeness of a column. The number of distinct val-

ues (distinct) allows query optimizers to estimate selec-

tivity of selection or join operations: the more distinct

values there are, the more selective such operations are.

To users, this number can indicate a candidate key by

comparing it with the number of rows. Alternatively,

this number simply illustrates how many different val-

ues are present (e.g., how many customers have ordered

something or how many cities appear in an address ta-

ble).

Determining the number of rows, metadata about

value lengths, and the number of null values is straight-

forward and can be performed in a single pass over the

data. Determining the number of distinct values is more

involved: Either hashing or sorting all values is neces-

sary. When hashing, the number of non-empty buckets

must be counted, taking into account hash collisions,

which further add to the count. When sorting, a pass

through the sorted data counts the number of values,

where groups of same values are counted only once.

From the number of distinct values the uniqueness

can be calculated, which is typically defined as the num-

ber of unique values divided by the number of rows.

Note that the number of distinct values can also be es-

timated using the minHash technique discussed in Sec-

tion 4.3.

Apart from determining the exact number of dis-

tinct values, query optimization is a strong incentive to

estimate those counts in order to predict query execu-

tion plan costs without actually reading the entire data.

Because approximate profiling is not the focus of this

survey, we give only two exemplary pointers. Haas et

al. base their estimation on data samples and describe

and empirically compare various estimators from the

literature [65]. Other works do scan the entire data but

use only a small amount of memory to hash the values

and estimate the number of distinct values, an early

example being [11].

3.2 Value distribution

Value distributions are more fine-grained cardinalities,

namely the cardinalities of groups of values. Histograms

are among the most common profiling results. A his-

togram stores frequencies of values within well-defined

groups, usually by dividing the ordered set of values

into a fixed set of buckets. The buckets of equi-width

histograms span value ranges of same length, while the

buckets of equi-depth (or equi-height) histograms each

represent the same number of value occurrences. A com-

mon special case of an equi-depth histogram is dividing

the data into four quartiles. A more general concept

is biased histograms, which can adapt their accuracy

for different regions [33]. Histograms are used for data-

base optimization as a rough probability distribution

to avoid a uniform distribution assumption and thus

provide better cardinality estimations [77]. In addition,

histograms are interpretable by humans, as their visual

representation is easy to comprehend.

The constancy of a column is defined as the ratio of

the frequency of the most frequent value (possibly a pre-

defined default value) and the overall number of values.

It thus represents the proportion of some constant value

compared to the entire column.

A particularly interesting distribution is the first

digit distribution for numeric values. Benford’s law

states that in naturally occurring numbers the distri-

bution of the first digit d of a number approximately

follows P (d) = log10(1+ 1
d ) [15]. Thus, the 1 is expected

to be the most frequent leading digit, followed by 2,

etc. Benford and others have observed this behaviour

in many sets of numbers, such as molecular weights,

building sizes, and electricity bills. In fact, the law has
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Table 2 Data profiling tasks and their primary use-cases.

been used to uncover accounting fraud and other fraud-

ulently created numbers.

Determining the above distributions usually in-

volves a single pass over the column, except for equi-

depth histograms (i.e., with fixed bucket sizes) and

quartiles, which determine bucket boundaries through

sorting. In the same manner or through hashing the

most frequent value can be discovered to determine con-

stancy.

Finally, many more things can be counted and ag-

gregated in a column. For instance, some profiling tools

and methods determine amongst others the frequency

distribution of soundex code, n-grams, and others, the

inverse frequency distribution, i.e., the distribution of

the frequency distribution, or the entropy of the fre-

quency distribution of the values in a column [82].

3.3 Types and patterns

The profiling tasks of this section are ordered by in-

creasing semantic richness (see also Table 1). We start

with the most simple observable properties, move on

to specific patterns of the values of a column, and end

with the semantic domain of a column.

Discovering the basic type of a column, i.e., clas-

sifying it as numeric, alphabetic, alphanumeric, date,

or time, is fairly simple: The presence or absence of nu-

meric and non-numeric characters already distinguishes

the first three. The latter two can usually be recognized

by the presence of numbers only within certain ranges,

and by numbers separated in regular patterns by spe-

cial symbols. Recognizing the actual data type, for in-

stance among the SQL types, is similarly easy. In fact,

data of many datatypes, such as timestamp, boolean,

or int, must follow a fixed, sometimes DBMS-specific

pattern. When classifying columns into data types, one

should choose the most specific data type – in partic-

ular avoiding the catch-alls char or varchar if possible.

For the data types decimal, float, and double, one can

additionally extract the maximum number of digits and

decimals to determine the metadata size and decimals.

A common and useful data profiling result is the ex-

traction of frequent patterns observed in the data of a

column. Then, data that do not conform to such a pat-

tern are likely erroneous or ill-formed. For instance, a

pattern for phone numbers might be informally encoded

as +dd (ddd) ddd dddd or as a simple regular expres-

sion \(\d3\)\-\d3\-\d4)3. A challenge when deter-

mining frequent patterns is to find a good balance be-

tween generality and specificity. The regular expression

.* is the most general and matches any string. On the

other hand, the expression data allows only that one

single string. For the Potter’s Wheel tool, Raman et

al. suggest finding the data pattern with the minimal

description length (MDL) [122]. They model descrip-

tion length as a combination of precision, recall, and

3 A more detailed regular expression, taking into account
different formatting options and different restrictions (e.g.,
phone numbers cannot begin with a 1), can easily reach 200
characters in length.
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conciseness and provide an algorithm to enumerate all

possible patterns. The RelIE system was designed for

information extraction from textual data [92]. It creates

regular expressions based on training data with posi-

tive and negative examples by systematically, greedily

transforming regular expressions. Finally, Fernau pro-

vides a good characterization of the problem of learning

regular expressions from data and presents a learning

algorithm for the task [51]. This work is also a good

starting point for further reading

The semantic domain of a column describes not the

syntax of its values but their meaning. While a regu-

lar expression might characterize a column, labeling it

as “phone number” provides a concrete domain. Clearly,

this task cannot be fully automated, but some work has

been done for common-place domains about persons,

places, etc. Zhang et al. take a first step by clustering

columns that have the same meaning across the tables

of a database [144], which they extend to the particu-

larly difficult area of numeric values in [142]. In [133] the

authors take the additional step of matching columns to

pre-defined semantics from the person domain. Know-

ledge of the domain is not only of general data profiling

interest, but also of particular interest to schema match-

ing, i.e., the task of finding semantic correspondences

between elements of different database schemata.

3.4 Data completeness

Explicit missing data are simple to characterize: for

each column, we report the number of tuples with a

null or a default value. However, datasets may contain

disguised missing values. For example, Web forms often

include fields whose values must be chosen from pull-

down lists. The first value from the pull-down list may

be pre-populated on the form, and some users may not

replace it with a proper or correct value due to lack

of time or privacy concerns. Specific examples include

entering 99999 as the zip code of an address or leaving

“Alabama” as the pre-populated state (in the U.S., Al-

abama is alphabetically the first state). Of course, for

some records, Alabama may be the true state.

Detecting disguised default values is difficult. One

heuristic solution is to examine each column at a time,

and, for each possible value, compute the distribution of

the other attribute values [74]. For example, if Alabama

is indeed a disguised default value, we expect a large

subset of tuples with state=Alabama (i.e., those whose

true state is different) to form an unbiased sample of

the whole relation.

Another instance in which profiling missing data is

not trivial involves timestamped data, such as measure-

ment or transaction data feeds. In some cases, tuples are

expected to arrive regularly, e.g., in datacenter moni-

toring, every machine may be configured to report its

CPU utilization every minute. However, measurements

may be lost en route to the database, and overloaded or

malfunctioning machines may not report any measure-

ments at all [60]. In contrast to detecting missing at-

tribute values, here we are interested in estimating the

number of missing tuples. Thus, the profiling task may

be to single out the columns identified as being of type

timestamp, and, for those that appear to be distributed

uniformly across a range, infer the expected frequency

of the underlying data source and estimate the number

of missing tuples. Of course, some timestamp columns

correspond to application timestamps with no expecta-

tion of regularity, rather than data arrival timestamps.

For instance, in an online retailer database, order dates

and delivery dates are generally not expected to be scat-

tered uniformly over time.

4 Multi-Column Analysis

Profiling tasks over a single column can be generalized

to projections of multiple columns. For example, there

has been work on computing multi-dimensional his-

tograms for query optimization [41,119]. Multi-column

profiling also plays an important role in data cleansing,

e.g., in assessing and explaining data glitches, which

often occur in column combinations [40].

In the remainder of this section, we discuss statisti-

cal methods and data mining approaches for generating

metadata based on co-occurrences and dependencies of

values across attributes. We focus on correlation and

rule mining approaches as well as unsupervised clus-

tering and learning approaches; machine learning tech-

niques that require training data or detailed knowledge

of the data are beyond the scope of data profiling.

4.1 Correlations and association rules

Correlation analysis reveals related numeric columns,

e.g., in an Employees table, age and salary may be cor-

related. A straightforward way to do this is to compute

pairwise correlations among all pairs of columns. In ad-

dition to column-level correlations, value-level associ-

ations may provide useful data profiling information.

Traditionally, a common application of association rules

has been to find items that tend to be purchased to-

gether based on point-of-sale transaction data. In these

datasets, each row is a list of items purchased in a given

transaction. An association rule {bread} → {butter},
for example, states that if a transaction includes bread,

it is also likely to include butter, i.e., customers who
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buy bread also buy butter. A set of items is referred

to as an itemset, and an association rule specifies an

itemset on the left-hand-side and another itemset on

the right-hand-side.

Algorithms for generating association rules from

data decompose the problem into two steps [8]:

1. Discover all frequent itemsets, i.e., those whose fre-

quencies in the dataset (i.e., their support) exceed

some threshold. For instance, the itemset {bread,

butter} may appear in 800 out of a total of 50,000

transactions for a support of 1.6 percent.

2. For each frequent itemset a, generate association

rules of the form l → a− l with l ⊂ a, whose confi-

dence exceeds some threshold. Confidence is defined

as the frequency of a divided by the frequency of

l, i.e., the conditional probability of l given a − l.
For example, if the frequency of {bread, butter}
is 800 and the frequency of {bread} alone is 1000

then the confidence of the association rule {bread}
→ {butter} is 0.8. That is, if bread is purchased,

there is an 80 percent chance that butter is also

purchased in the same transaction.

In the context of relational data profiling, associa-

tion rules denote relationships or patterns between at-

tribute values among columns. Consider an Employees

table with fields name, employee number, department,
position, and allowance. We may find a frequent itemset

of the form {department=finance, position=assistant

manager, allowance=$1000} and a corresponding as-

sociation rule of the form {department=finance,

position=assistant manager} → {allowance=$1000}.
This would be the case if most or all assistant managers

in the finance department were assigned an allowance

budget of $1000.

While the second step mentioned above is straight-

forward (generating association rules from frequent

itemsets), the first step is computationally expensive

due to the large number of possible frequent itemsets

(or patterns of values) [72]. Popular algorithms for effi-

ciently discovering frequent patterns include Apriori [8],

Eclat [141], and FP-Growth [67].

The Apriori algorithm exploits the observation that

all subsets of a frequent itemset must also be frequent.

In the first iteration, Apriori finds all frequent item-

sets of size one, i.e., those containing one item or one

attribute value. In the next iteration, only the fre-

quent itemsets of size one are expanded to find frequent

itemsets of size two, and so on. There are also sev-

eral optimized versions of Apriori, such as DHP [115]

and RARM [35]. FP-Growth discovers frequent item-

sets without a candidate generation step. It transforms

the database into an extended prefix tree of frequent

patterns (FP-tree). The FP-Growth algorithm traverses

the tree and generates frequent itemsets by pattern-

growth in a depth-first manner. Finally, Eclat is based

on intersecting transaction-id (TID) sets of associated

itemsets, and is best suited for dealing with large fre-

quent itemsets. Eclat’s strategy for identifying frequent

itemsets is similar to Apriori.

Negative correlation rules, i.e., those that identify

attribute values that do not co-occur with other at-

tribute values, may also be useful in data profiling to

find anomalies and outliers [21]. However, discovering

negative association rules is more difficult, because in-

frequent itemsets cannot be pruned in the same way as

frequent itemsets and therefore novel pruning rules are

required [135].

Finally, we note that in addition to using existing

techniques, such as correlations and association rules

for profiling, extensions have been proposed, such as

discovering linear dependencies between columns [25].

However, in this approach, the user has to choose the

subset of attributes to be analyzed. We discuss depen-

dency discovery in more detail in Section 5.

4.2 Clustering and outlier detection

Another useful profiling task is to segment the records

into homogeneous groups using a clustering algorithm;

furthermore, records that do not fit into any cluster

may be flagged as outliers. Cluster analysis can iden-

tify groups of similar records in a table, while outliers

may indicate data quality problems. For example, Dasu

et al. cluster numeric columns and identify outliers in

the data [36]. Furthermore, based on the assumption

that data glitches occur across attributes and not in

isolation [16], statistical inference has been applied to

measure glitch recovery in [39].

Another example of clustering in the context of data

profiling is ProLOD++, which applies k-means cluster-

ing to Rdf relations [1]. We refer the reader to surveys

by Jain et al. [78] and Rui et al. [137] for more details

on clustering algorithms for relational data.

4.3 Summaries and sketches

Besides clustering, another way to describe data is to

create summaries or sketches [23]. This can be done by

sampling or hashing data values to a smaller domain.

Sketches have been widely applied to answering approx-

imate queries, data stream processing and estimating

join sizes [37, 54, 111]. Cormode et al. give an overview

of sketching and sampling for approximate query pro-

cessing [31].
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Another interesting task is to assess the similar-

ity of two columns, which can be done using multi-

column hashing techniques. The Jaccard similarity of

two columns A and B is |A∩B|/|A∪B|, i.e., the num-

ber of distinct values they have in common divided by

the total number of distinct values appearing in them.

This gives the relative number of values that appear in

both A and B. Since semantically similar values may

have different formats, we can also compute the Jac-

card similarity of the n-gram distributions in A and B.

If the distinct value sets of columns A and B are not

available, we can estimate the Jaccard similarity using

their MinHash signatures [38].

5 Dependency Detection

We now survey various formalisms for detecting de-

pendencies among columns and algorithms for min-

ing them from data, including keys and unique col-

umn combinations (Section 5.1), functional dependen-

cies (Section 5.2), inclusion dependencies (Section 5.3),

and other types of dependencies that are relevant to

data profiling (Section 5.4). Table 3 lists the algorithms

that are discussed.

We use the following symbols: R and S denote rela-

tional schemata, with r and s denoting instances of R

and S, respectively. The number of columns in R is |R|
and the number of tuples in r is |r|. We refer to tuples

of r and s as ri and sj , respectively. Subsets of columns

are denoted by upper-case X,Y, Z (with |X| denoting

the number of columns in X) and individual columns

by upper-case A,B,C. Furthermore, we define πX(r)

and πA(r) as the projection of r on the attribute set

X or attribute A, respectively; thus, |πX(r)| denotes

the count of district combinations of the values of X

appearing in r. Accordingly, ri[A] indicates the value

of the attribute A of tuple ri and ri[X] = πX(ri). We

refer to an attribute value of a tuple as a cell.

The number of potential dependencies in r can be

exponential in the number of attributes |R|; see Fig-

ure 2 for an illustration of all possible subsets of the

attributes in Table 4. This means that any dependency

discovery algorithm has a worst-case exponential time

complexity. There are two classes of heuristics that have

appeared in the literature. Column-based or top-down

approaches start with “small” dependencies (in terms of

the number of attributes they reference) and work their

way to larger dependencies, pruning candidates along

the way whenever possible. Row-based or bottom-up

approaches attempt to avoid repeated scanning of the

entire relation during candidate generation. While these

approaches cannot reduce the worst-case exponential

complexity of dependency discovery, experimental stud-

ies have shown that column-based approaches work well

on tables containing a very large number of rows and

row-based approaches work well for wide tables [6,113].

For more details on the computational complexity of

various Fd and Ind discovery algorithms, we refer the

interested reader to [94].

5.1 Unique column combinations and keys

Given a relation R with instance r, a unique column

combination (a “unique”) is a set of columns X ⊆ R

whose projection on r contains only unique value com-

binations.

Definition 1 (Unique) A column combination X ⊆
R is a unique, iff ∀ri, rj ∈ r, i 6= j : ri[X] 6= rj [X].

Analogously, a set of columns X ⊆ R is a non-

unique column combination (a “non-unique”), iff its

projection on r contains at least one duplicate value

combination.

Definition 2 (Non-unique) A column combination

X ⊆ R is a non-unique, iff ∃ri, rj ∈ r, i 6= j : ri[X] =

rj [X].

Each superset of a unique is also unique while each

subset of a non-unique is also a non-unique. Therefore,

discovering all uniques and non-uniques can be reduced

to the discovery of minimal uniques and maximal non-

uniques:

Definition 3 (Minimal Unique) A column combi-

nation X ⊆ R is a minimal unique, iff ∀X ′ ⊂ X : X ′ is

a non-unique.

Definition 4 (Maximal Non-Unique) A column

combination X ⊆ R is a maximal non-unique, iff ∀X ′ ⊃
X : X ′ is a unique.

A primary key is a unique that was explicitly chosen

to be the unique record identifier while designing the ta-

ble schema. Since the discovered uniqueness constraints

are only valid for a relational instance at a specific point

of time, we refer to uniques and non-uniques instead of

keys and non-keys. A further distinction can be made

in terms of possible keys and certain keys when dealing

with uncertain data and NULL values [86].

The problem of discovering a minimal unique of size

k ≤ n is NP-complete [97]. To discover all minimal

uniques and maximal non-uniques of a relational in-

stance, in the worst case, one has to visit all subsets of

the given relation, no matter the strategy (breadth-first

or depth-first) or direction (bottom-up or top-down).
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Table 3 Dependency discovery algorithms.

Dependency Algorithms

Uniques HCA [3], GORDIAN [126], DUCC [70], SWAN [5]
Functional Dependencies TANE [75], FUN [110], FD Mine [139], Dep-Miner [95], FastFDs [136],

FDEP [52], DFD [6]
Conditional Functional Dependencies [24], [59], CTANE [47], CFUN [42], FACD [91], FastCFD [47]
Inclusion Dependencies [101], [87], SPIDER [14], ZigZag [102]
Conditional Inclusion Dependencies [61], CINDERELLA [13], PLI [13]
Foreign keys [123], [143]
Denial Constraints FastDC [29]
Differential Dependencies [128]
Sequential Dependencies [57]

Thus, the discovery of all minimal uniques and maximal

non-uniques of a relational instance is an NP-hard prob-

lem and even the solution set can be exponential [64].

Given |R|, there can be
(|R|

|R|
2

)
≥ 2

|R|
2 minimal uniques

in the worst case, as all combinations of size |R|2 can

simultaneously be minimal uniques.

5.1.1 Gordian – row-based discovery

Row-based algorithms require multiple runs over all col-

umn combinations as more and more rows are consid-

ered. They benefit from the intuition that non-uniques

can be detected without considering every row. A recur-

sive unique discovery algorithm that works this way is

Gordian [126]. The algorithm consists of three parts:

(i) Pre-organize the data in form of a prefix tree,

(ii) find maximal non-uniques by traversing the pre-

fix tree, (iii) compute minimal uniques from maximal

non-uniques.

The prefix tree is stored in main memory. Each level
of the tree represents one column of the table whereas

each branch stands for one distinct tuple. Tuples that

have the same values in their prefix share the corre-

sponding branches. E.g., all tuples that have the same

value in the first column share the same node cells. The

time to create the prefix tree depends on the number of

rows, therefore this can be a bottleneck for very large

datasets. The traversal of the tree is based on the cube

operator [63], which computes aggregate functions on

projected columns. Non-unique discovery is performed

by a depth-first traversal of the tree for discovering

maximum repeated branches, which constitute maxi-

mal non-uniques.

After discovering all maximal non-uniques, Gor-

dian computes all minimal uniques by generating min-

imal combinations that are not covered by any of the

maximal non-uniques. In [126] it is stated that this

complementation step needs only quadratic time in

the number of minimal uniques, but the presented al-

gorithm implies cubic runtime: For each non-unique,

the updated set of minimal uniques must be simplified

by removing redundant uniques. This simplification re-

quires quadratic runtime in the number of uniques. As

the number of minimal uniques is bound linearly by the

number s of maximal non-uniques, the runtime of the

unique generation step is O(s3).

Gordian exploits the intuition that non-uniques

can be discovered faster than uniques. Non-unique dis-

covery can be aborted as soon as one repeated value is

discovered among the projections. The prefix structure

of the data facilitates this analysis. It is stated that

the algorithm is polynomial in the number of tuples for

data with a Zipfian distribution of values. Nevertheless,

in the worst case Gordian has exponential runtime.

The generation of minimal uniques from maximal

non-uniques can be a bottleneck if there are many max-

imal non-uniques. Experiments showed that in most

cases the unique generation dominates the runtime [3].

Furthermore, the approach is limited by the available

main memory. Although data may be compressed be-

cause of the prefix structure of the tree, the amount

of processed data may still be too large to fit in main

memory.

5.1.2 Column-based traversal of the column lattice

The problem of finding minimal uniques is compara-

ble to the problem of finding frequent itemsets [8]. The

well-known Apriori approach is applicable to minimal

unique discovery, working bottom-up as well as top-

down. With regard to the powerset lattice of a relational

schema, the Apriori algorithms generate all relevant col-

umn combinations of a certain size and verify those at

once. Figure 2 illustrates the powerset lattice for the

running example in Table 4. The effectiveness and the-

oretical background of those algorithms is discussed by

Giannela and Wyss [55]. They presented three breadth-

first traversal strategies: a bottom-up, a top-down, and

a hybrid traversal strategy.

Bottom-up unique discovery traverses the power-

set lattice of the schema R from the bottom, begin-
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Table 4 Example dataset.

tuple id first last age phone
1 Max Payne 32 1234
2 Eve Smith 24 5432
3 Eve Payne 24 3333
4 Max Payne 24 3333

k"="4"

k"="3"

k"="2"

k"="1" {first}" {last}" {age}" {phone}"

{first,"last}" {first,"age}" {first,"phone}" {last,"age}" {age,"phone}"{last,"phone}"

{first,"last,"age}" {first,"last,"phone}" {first,"age,"phone}" {last,"age,"phone}"

{first,"last,"age,"phone}"

Fig. 2 Powerset lattice for the example Table 4.

ning with all 1-combinations toward the top of the lat-

tice, which is the |R|-combination. The prefixed num-

ber k of k-combination indicates the size of the com-

bination. The same notation applies for k-candidates,

k-uniques, and k-non-uniques. To generate the set of

2-candidates, we generate all pairs of 1-non-uniques. k-

candidates with k > 2 are generated by extending the

(k−1)-non-uniques by another non-unique column. Af-

ter the candidate generation, each candidate is checked

for uniqueness. If it is identified as a non-unique, the

k-candidate is added to the list of k-non-uniques.

If the candidate is verified as unique, its minimal-

ity has to be checked. The algorithm terminates when

k = |1-non-uniques|. A disadvantage of this candidate

generation technique is that redundant uniques and du-

plicate candidates are generated and tested.

The Apriori idea can also be applied to the top-down
approach. Having the set of identified k-uniques, one has

to verify whether the uniques are minimal. Therefore,

for each k-unique, all possible (k − 1)-subsets have to

be generated and verified. The hybrid approach gener-

ates the kth and (n − k)th levels simultaneously. Ex-

periments have shown that in most datasets, uniques

usually occur in the lower levels of the lattice, which

favours bottom-up traversal [3].

Hca is an improved version of the bottom-up Apri-

ori technique [3]. Hca optimizes the candidate gen-

eration step, applies statistical pruning, and considers

functional dependencies that have been inferred on the

fly. In terms of candidate generation, Hca applies the

optimized join that was introduced for frequent item-

set mining [8]. Hca generates candidates by combin-

ing only (k − 1)-non-uniques that share the first k − 2

elements. If no such two non-uniques exist, no candi-

dates are generated and the algorithm terminates be-

fore reaching the last level of the powerset lattice. Fur-

ther pruning can be achieved by considering value his-

tograms and distinct counts that can be retrieved on

the fly in previous levels. For example, consider the 1-

non-uniques last and age from Table 4. The column

combination {last,age} cannot be a unique based on

the value distributions. While the value “Payne” occurs

three times in last, the column age contains only two

distinct values. That means at least two of the rows con-

taining the value “Payne” also have a duplicate value in

the age column. Using the count distinct values, Hca

detects functional dependencies on the fly and leverages

them to avoid unnecessary uniqueness checks.

While Hca improves existing bottom-up ap-

proaches, it does not perform the early identification

of non-uniques in a row-based manner done by Gor-

dian. Thus, Gordian is faster on datasets with many

non-uniques, but Hca works better on datasets with

many minimal uniques.

5.1.3 DUCC – traversing the lattice via random walk

While the breadth-first approach for discovering mini-

mal uniques gives the most pruning, a depth-first ap-

proach might work well if there are relatively few min-

imal uniques that are scattered on different levels of

the powerset lattice. Depth-first detection of unique col-

umn combinations resembles the problem of identifying

the most promising paths through the lattice to dis-

cover existing minimal uniques and avoid unnecessary

uniqueness checks. Ducc is a depth-first approach that

traverses the lattice back and forth based on the unique-

ness of combinations [70]. Following a random walk

principle by randomly adding columns to non-uniques

and removing columns from uniques, Ducc traverses

the lattice in a manner that resembles the border be-

tween uniques and non-uniques in the powerset lattice

of the schema.

Ducc starts with a seed set of 2-non-uniques and

picks a seed at random. Each k-combination is checked

using the superset/subset relations and pruned if any

of them subsumes the current combination. If no previ-

ously identified combination subsumes the current com-

bination Ducc performs uniqueness verification. De-

pending on the verification, Ducc proceeds with an

unchecked (k− 1)-subset or (k− 1)-superset of the cur-

rent k-combination. If no seeds are available, it checks

whether the set of discovered minimal uniques and max-

imal non-uniques correctly complement each other. If

so, Ducc terminates; otherwise, a new seed set is gen-

erated by complementation.

Ducc also optimizes the verification of minimal uni-

ques by using a position list index (PLI) representation

of values of a column combination. In this index, each

position list contains the tuple ids that correspond to
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the same value combination. Position lists with only one

tuple id can be discarded, so that the position list index

of a unique contains no position lists. To obtain the PLI

of a column combination, the position lists in PLIs of all

contained columns have to be cross-intersected. In fact,

Ducc intersects two PLIs in a similar way in which a

hash join operator would join two relations. As a result

of using PLIs, Ducc can also apply row-based pruning,

because the total number of positions decreases with

the size of column combinations. Intuitively, combining

columns makes the contained combination values more

specific and therefore more likely to be distinct.

Ducc has been experimentally compared to Hca,

a column-based approach, and Gordian, a row-based

unique discovery algorithm. Since Ducc combines row-

based and column-based pruning, it performs signif-

icantly better [70]. Experiments on smaller datasets

showed that while Hca outperforms Gordian on low-

dimensional data with many uniques, Gordian out-

performs Hca on datasets with many attributes but

few uniques [3]. Furthermore the random walk strat-

egy allows a distributed application of Ducc for better

scalability.

5.1.4 SWAN – an incremental approach

Swan maintains a set of indexes to efficiently find the

new sets of minimal uniques and maximal non-uniques

after inserting or deleting tuples [5]. Swan builds such

indexes based on existing minimal uniques and maximal

non-uniques in a way that avoids a full table scan. Swan

consists of two main components: the Inserts Handler

and the Deletes Handler. The Inserts Handler takes as

input a set of inserted tuples, checks all minimal uniques

for uniqueness, finds the new sets of minimal uniques

and maximal non-uniques, and updates the repository

of minimal uniques and maximal non-uniques accord-

ingly. Similarly, the Deletes Handler takes as input a

set of deleted tuples, searches for duplicates in all max-

imal non-uniques, finds the new sets of minimal uniques

and maximal non-uniques, and updates the repository

accordingly.

5.2 Functional dependencies

A functional dependency (Fd) over R is an expres-

sion of the form X → A, indicating that ∀ri, rj ∈ r

if ri[X] = rj [X] then ri[A] = rj [A]. That is, any two

tuples that agree on X must also agree on A. We refer

to X as the left-hand-side (LHS) and A as the right-

hand-side (RHS). Given r, we are interested in finding

all nontrivial and minimal Fds X → A that hold on

r, with non-trivial meaning A ∩ X = ∅ and minimal

meaning that there must not be any Fd Y → A for any

Y ⊂ X. A naive solution to the Fd discovery problem

is as follows.

For each possible RHS A

For each possible LHS X ∈ R \A
For each pair of tuples ri and rj

If ri[X] = rj [X] and ri[A] 6= rj [A] Break

Return X → A

This algorithm is prohibitively expensive: for each of

the |R| possibilities for the RHS, it tests 2(|R|−1) possi-

bilities for the LHS, each time having to scan r multiple

times to compare all pairs of tuples. However, notice

that for X → A to hold, the number of distinct values

of X must be the same as the number of distinct values

of XA – otherwise at least one combination of values

of X that is associated with more than one value of A,

thereby breaking the Fd [75]. Thus, if we pre-compute

the number of distinct values of each combination of

one or more columns, the algorithm simplifies to:

For each possible RHS A

For each possible LHS X ∈ R \A
If |πX(r)| = |πXA(r)|

Return X → A

Recall Table 4. We have |πphone(r)| = |πage,phone(r)| =

|πlast,phone(r)|. Thus, phone → age and phone → last
hold. Furthermore, |πlast,age(r)| = |πlast,age,phone(r)|, im-

plying {last,age} → phone.

The above algorithm is still inefficient due to the

need to compute distinct value counts and test all pos-

sible column combinations. As was the case with unique

discovery, Fd discovery algorithms employ row-based

(bottom-up) and column-based (top-down) optimiza-

tions, as discussed below. Figure 3 lists the algorithms

that are discussed, along with their extensions to condi-

tional Fd discovery, which are covered in Section 5.2.4.

An extensive experimental evaluation of various Fd dis-

covery algorithms on different datasets, scaling in both

the number of rows and the number of columns, is pre-

sented in [113].

5.2.1 Column-based algorithms

As was the case with uniques, Apriori-like approaches

can help prune the space of Fds that need to be exam-

ined, thereby optimizing the first two lines of the above

straightforward algorithms. TANE [75], FUN [110], and

FD Mine [139] are three algorithms that follow this

strategy, with FUN and FD Mine introducing addi-

tional pruning rules beyond TANE’s based on the prop-

erties of Fds. They start with sets of single columns in

the LHS and work their way up the powerset lattice
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Fig. 3 Classification of algorithms for Functional Depen-
dency discovery and their extensions to Conditional Func-
tional Dependencies.

in a level-wise manner. Since only minimal Fds need

to be returned, it is not necessary to test possible Fds

whose LHS is a superset of an already-found Fd with

the same RHS. For instance, in Table 4, once we find

that phone → age holds, we do not need to consider

{first,phone} → age, {last,phone} → age, etc.

Additional pruning rules may be formulated from

Armstrong’s axioms, i.e., we can prune from consider-

ation those Fds that are logically implied by those we

have found so far. For instance, if we find that A→ B

and B → A, then we can prune all LHS column sets

including B, because A and B are equivalent [139]. An-

other pruning strategy is to ignore columns sets that

have the same number of distinct values as their sub-

sets [110]. Returning to Table 4, observe that phone→
first does not hold. Since |πphone(r)| = |πlast,phone(r)| =

|πage,phone(r)| = |πlast,age,phone(r)|, we know that adding

last and/or age to the LHS cannot lead to a valid Fd

with first on the RHS. To determine these cardinalities

the approaches use a so-called partition data structure,

which is similar to the PLIs of Section 5.1.3.

5.2.2 Row-based algorithms

Row-based algorithms examine pairs of tuples to

determine LHS candidates. Dep-Miner [95] and

FastFDs [136] are two examples; the FDEP algo-

Table 5 Difference sets computed from Table 4.

tuple ID pair difference set

(1,2) first, last, age, phone

(1,3) first, age, phone

(1,4) age, phone

(2,3) last, phone

(2,4) first, last, phone

(3,4) first

rithm [52] is also row-based, but the way it ultimately

finds Fds that hold is different.

The idea behind row-based algorithms is to com-

pute the so-called difference sets for each pair of tu-

ples, which are the columns on which the two tu-

ples differ. Table 5 enumerates the difference sets

in the data from Table 4. Next, we can find can-

didate LHS’s from the difference sets as follows.

Pick a candidate RHS, say, phone. The difference

sets that include phone, with phone removed, are:

{first,last,age}, {first,age}, {age}, {last} and {first,last}.
This means that there exist pairs of tuples with different

values of phone and also with different values of these

five difference sets. Next, we find minimal subsets of

columns that have a non-empty intersection with each

of these difference sets. Such subsets are exactly the

LHS’s of minimal Fds with phone as the RHS: if two

tuples have different values of phone, they are guaran-

teed to have different values of the columns in the above

minimal subsets, and therefore they do not cause Fd vi-

olations. Here, there is only one such minimal subset,

{last,age}, giving {last,age} → phone. If we repeat this

process for each possible RHS, and compute minimal

subsets corresponding to the LHS’s, we obtain the set

of minimal Fds. The main difference among row-based

Fd discovery algorithms is in how they find the minimal

subsets.

A recent approach to Fd discovery is DFD, which

adapts the column-based and row-based pruning of the

unique discovery approach Ducc to the problem of Fd

discovery [6]. DFD decomposes the attribute lattice into

|R| lattices, considering each attribute as a possible

RHS of an Fd. For the remaining |R| − 1 attributes,

DFD applies a random walk approach by pruning su-

persets of Fd LHS’s and subsets of non-Fd LHS’s.

DFD has been experimentally compared to TANE,

which is a column-based approach, and FastFDs, which

is row-based [6]. The experiments confirm that row-

based approaches work well on high-dimensional tables

with a relatively small number of tuples, while column-

based approaches, such as TANE, perform better on

low-dimensional tables with a large number of rows.

DFD, which benefits from row-based and column-based

pruning, performs significantly better than TANE and
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FastFDs, unless the table has very many tuples and

very few columns or vice versa.

5.2.3 Partial and Approximate Functional

Dependencies

While Fds were meant for schema design and were en-

forced by the database management system, there are

many instances in which a database may not satisfy

some Fds exactly. For example, the application seman-

tics may have changed over time and Fd enforcement

was disabled, or the database may have been created

by integrating conflicting data sources. As a result, it is

useful to discover partial or soft Fds, i.e., those which

“almost hold”, perhaps with a few exceptions.

A common definition of “almost holding” or “confi-

dence” is the relative size of the largest subset of r on

which a given Fd holds exactly divided by |r| [58, 85].

For example, if we remove tuple 1 from Table 4, the

Fd last→ phone holds exactly, and therefore its confi-

dence is 3
4 . The CORDS system for finding soft Fds uses

a slightly different definition: the confidence of X → A

is |πX(r)|
|πXA(r)| [76]. Other definitions involve computing the

number of tuples or tuple pairs that do not violate the

Fd divided by |r| or |r|2, respectively [85].

A related notion is that of approximate Fd infer-

ence, in which partial or exact Fds are generated from

a sample of a relation [76, 85]. Of course, even if an

Fd holds exactly on a subset of a relation, it may hold

partially on the whole relation. Approximate Fd infer-

ence is appealing from a computational standpoint as

it requires only a sample of the data.

5.2.4 Conditional functional dependencies

Conditional functional dependencies (Cfds), proposed

in [46], encode Fds that hold only on well-defined sub-

sets of r. For instance, {first,last} → age does not hold

on the entire relation in Table 4, but it does hold on a

subset of it where first = Eve. Formally, a Cfd consists

of two parts: an embedded Fd X → A and an accom-

panying pattern tuple with attributes XA. Each cell of

a pattern tuple contains a value from the corresponding

attribute’s domain or a wildcard symbol ‘ ’. A pattern

tuple identifies a subset of a relation instance in a nat-

ural way: a tuple ri matches a pattern tuple if it agrees

on all of its non-wildcard attributes. In the above ex-

ample, we can formulate a Cfd with an embedded Fd

{first,last} → age and a pattern tuple (Eve, , ), mean-

ing that the embedded Fd holds only on tuples which

match the pattern, i.e., those with first = Eve. We de-

fine the support of a pattern tuple as the fraction of tu-

ples in r that it matches; e.g., the support of (Eve, , )

in Table 4 is 2
4 .

An important special case occurs when the pat-

tern tuple has no wildcards. For example, the follow-

ing (admittedly accidental) Cfd holds on Table 4:

age→ phone with a pattern tuple (32, 1234). In other

words, if age = 32 then phone = 1234. These special

cases, which resemble instance-level association rules

(that have 100 percent confidence), are referred to as

constant Cfds.

Additionally, as was the case with traditional Fds,

we can define approximate Cfds as those that hold on

the subset specified by the pattern tableau with some

exceptions. For the case of confidence defined as the

minimum number of tuples that must be removed to

make the Cfd hold, [32] gives algorithms for computing

summaries that allow the confidence of a Cfd to be

estimated with guaranteed accuracy.

Cfd discovery involves a larger search space than

Fd discovery: in addition to detecting embedded Fds,

we must also find the pattern tuples. Cfd discovery

algorithms typically extend existing Fd discovery algo-

rithms: e.g., CTANE [47] and the algorithm from [24]

extend TANE, while FastCFD [47] extends FastFDs

(see Figure 3).

Additionally, two simpler problems have been stud-

ied. The first is to discover pattern tuples given an em-

bedded Fd [59]. The output of this technique is an (ap-

proximately) smallest set of pattern tuples, each lead-

ing to an approximate Cfd with a confidence exceed-

ing a user-supplied confidence threshold, the union of

which has a support that exceeds a user-supplied sup-

port threshold. The second problem is to report only the

constant Cfds. For this problem, CFDMiner has been

proposed Cfds [47], which is based on frequent item

set mining, as well as FACD [91], which includes more

pruning rules. Also, CFUN, an extension of FUN to

generating frequent constant Cfds that exceed a given

support threshold, has been proposed in [42].

5.3 Inclusion dependencies

An inclusion dependency (Ind) between column A of

relation R and column B of relation S, written R.A ⊆
S.B, or A ⊆ B when the relations are clear from

context, asserts that each value of A appears in B.

Similarly, for two sets of columns X and Y , we write

R.X ⊆ S.Y , or X ⊆ Y , when each distinct combina-

tions of values in X appears in Y . We refer to R.A or

R.X as the left-hand-side (LHS) and S.B or S.Y as

the right-hand-side (RHS). Inds with a single-column

LHS and RHS are referred to as unary and those with

multiple columns in the LHS and RHS are called n-ary.
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Table 6 Excerpts of two relation instances and the corre-
sponding value index.

A B

1 3
1 4
2 3
1 5

C D

1 3
2 3
4 4
7 4

Value Columns

1 A, C
2 A, C
3 B, D
4 B, D
5 B
7 C

A naive solution to Ind discovery in relation in-

stances r and s is to try to match each possible LHS

with each possible RHS, as shown below.

For each column combination X in R

For each column combination Y in S

with |Y | = |X|
If ∀x ∈ πX(r) ∃y ∈ πY (s) such that x = y

Return X ⊆ Y

Note that for any considered X and Y , we can stop as

soon as we find a value combination of X that does not

appear in Y . Still, this is not an efficient approach as it

repeatedly scans r and s when testing the possible LHS

and RHS combinations.

5.3.1 Generating unary inclusion dependencies

For the special case of unary Inds, a common approach

is to pre-process the data to speed up the subsequent

Ind discovery. De Marchi et al. [101] propose a tech-

nique that scans the database and builds value indices,

which are similar to inverted indices. Table 6 shows ex-

cerpts of two relations instances, one with columns A

and B and the other with columns C and D, and the
corresponding value index. The index contains an entry

for each value occurring in the database, followed by a

list of columns in which this value appears. It is now

straightforward to find the Inds: for each possible LHS

column, we check if there exists another column that

occurs in every row of the value index that contains the

LHS column. In Table 6, we have A ⊆ C (whenever A

appears in the value index, so does B) and D ⊆ B.

The SPIDER algorithm [14] is another example,

which pre-processes the data by sorting the values of

each column and writing them to disk. Next, each

sorted stream, corresponding to the values of one par-

ticular attribute, is consumed in parallel in a cursor-like

manner, and an Ind A ⊆ B can be discarded as soon

as we detect a value in A that is not present in B.

5.3.2 Generating n-ary inclusion dependencies

Once all unary Inds have been discovered, De Marchi

et al. [101] give a level-wise algorithm, similar to the

TANE algorithm for Fd discovery, which constructs

Inds with i columns from those with i−1 columns and

prunes Inds that cannot be true. Additionally, hybrid

algorithms have been proposed in [87, 102] that com-

bine bottom-up and top-down traversal for additional

pruning.

The Binder algorithm uses divide and conquer

principles to handle larger datasets than related

work [114]. In the divide step, it splits the input dataset

horizontally into partitions and vertically into buckets

with the goal to fit each partition into main memory.

In the conquer step, Binder then validates the set of

all possible inclusion dependency candidates, which are

created in the same fashion as in [101], against the par-

titions. Processing one partition after another, the vali-

dation constructs two indexes on each partition, a dense

index and an inverted index, and uses them to efficiently

prune invalid candidates from the result set.

5.3.3 Partial and approximate inclusion dependencies

Similarly to partial Fds, partial Inds have been defined

as those that almost hold. Using the notion of removing

the fewest tuples so that the remainder satisfies the Ind

exactly, we can define the strength or confidence of a

partial Ind X ⊆ Y as |πX(r)|−|πX(r)/πY (r)|
|πX(r)| [96, 101].

That is, the confidence is the number of distinct values

of X that appear in Y divided by the number of distinct

values of X. An equivalent bag-semantics version of this

definition is to divide the number of tuples whose X-

values appear in Y by the total number of tuples [61].

According to both definitions, the confidence of B ⊆ D
in Table 6 is 3

4 . Most of the algorithms discussed above

can be extended to discover partial Inds.

5.3.4 Conditional inclusion dependencies

Similarly to Cfds, conditional inclusion dependencies

(Cinds) represent Inds that hold only on well-defined

subsets of relations [19]. A Cind consists of an embed-

ded standard Ind R.X ⊆ S.Y and an accompanying

pattern tuple with attributes R.Xp and S.Yp, where

X ∩ Xp = ∅ and Y ∩ Yp = ∅. A Cind specifies that

for the subset of R that matches the Xp-values of the

pattern tuple, all the X-values must appear in Y , and

furthermore, the Yp values of these tuples in S must

match the Yp-values of the pattern tuple.

For example, suppose a business maintains a Cus-

tomers table, keyed by cid, and including a column class
indicating the class of the customer (e.g., gold or sil-

ver). Furthermore, suppose a Services table maintains

the services that customers subscribe to, including a
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service id (sid), a cid and the type of service (e.g., hard-

ware or software). Let Services.cid ⊆ Customers.cid be

the embedded Ind and let (Services.type = software,

Customers.class = gold) be a pattern tuple. This Cind

asserts that the customer ids in the Services table must

be drawn from the customer ids in the Customers

table, and moreover, gold customers can obtain only

software services. On the other hand, a pattern tuple

Services.type = software implies that only the soft-

ware services must have customer ids drawn from those

in the Customers table (e.g., perhaps hardware services

are provided to customers stored in a different table).

Given an embedded Ind, the algorithm from [61],

which also applies to Cfds, finds pattern tuples that

lead to partial Cinds with a confidence satisfying

a user-supplied threshold. Similarly, Bauckmann et

al. [13] start with a set of approximate Inds and find

pattern tuples to turn these into Cinds; however, in

contrast to [61], they are not constrained to a single em-

bedded Ind. The authors present two algorithms: CIN-

DERELLA, which is based on the Apriori algorithm

for association rule mining and employs a breadth-first

traversal of the powerset lattice, and PLI, which em-

ploys a depth-first traversal instead.

5.3.5 Generating foreign keys

Ind discovery is a precursor to foreign key detection:

a foreign key must satisfy the corresponding inclu-

sion dependency but not all Inds are foreign keys. For

example, multiple tables may contain auto-increment

columns that serve as surrogate keys, and while in-

clusion dependencies among them may exist, they are

not foreign keys. Once Inds have been discovered, addi-

tional heuristics have been proposed, which essentially

rank the discovered Inds according to their likelihood

of being foreign keys [96, 123, 143]. A very simple rule

may be that if the LHS and RHS have similar names,

then A may be a foreign key. It is also useful to examine

the set of discovered Inds as a whole: for instance, for-

eign keys usually are not also primary keys that serve

as foreign keys for other tables, and furthermore, a pri-

mary key is often referenced by multiple foreign keys

in multiple tables, meaning that a primary key should

appear in the RHS of multiple Inds, with the LHS’s

being the foreign keys. More complex rules may refer-

ence value distributions; e.g., the values in a foreign key

column should form a random sample of the values in

the corresponding primary key column.

5.4 Other dependencies

Having outlined the algorithms for discovering tradi-

tional dependencies and their extensions, we now dis-

cuss other types of dependencies related to data profil-

ing. Recently, an extension of FastFDs called FastDC

was proposed for discovering denial constraints, which

are universally-quantified first-order logic formulas that

subsume Fds, Cfds, Inds and many others [29].

Also, functional dependencies have recently been

generalized to differential dependencies in [128]. A dif-

ferential dependency X → Y states that if two tuples

have “close” values of X (say, the edit distance between

them is small), then their A values must also be close4.

For example, in a financial database, it may be true that

if two tuples have similar values of date (e.g., within

seven days), then their price values must also be similar

(e.g., within 100 dollars). Row- and column-based ap-

proaches to discovering differential dependencies were

given in [128].

Another interesting class of dependencies involve or-

der. For instance, it may be useful to discover that if r is

sorted on some attribute A, it is also sorted on B, which

gives an order dependency between A and B [56]. This

concept was generalized in [57], which proposed sequen-

tial dependencies (SDs). An SD states that when sorted

on A, any two consecutive values of B must be within

a predefined range. Given a complete SD, including the

attributes A and B as well as the range, [57] gives an

algorithm for discovering ranges of values of A in which

the SD is approximately satisfied. To the best of our

knowledge, the general problem of SD discovery from

data is open.

5.5 Summary and discussion

Dependency discovery has been a popular research area

in data management. Many of the algorithms and tech-

niques for dependency discovery are based upon classi-

cal data mining solutions, such as the Apriori algorithm

for efficient generation of association rules. Additional

technical challenges arise in the context of conditional

dependencies, and novel search space pruning strate-

gies have been developed based on the properties of the

given dependencies.

Data profiling results can be not only complex, but

also very large. For instance, it is not uncommon to find

thousands of functional dependencies in a given dataset.

4 Differential dependencies also generalize matching depen-

dencies [49] (if two tuples have close values of X, their A

values must be exactly the same) and metric functional de-
pendencies [89] (if two tuples have the same values of X, their
A values must be close).
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To handle this and focus users on the most important,

interesting, or surprising ones, ranking profiling results

can help, as Chu et al. show for denial constraints [29].

They suggest two functions, namely succinctness and

coverage, to assess their interestingness. Similar inter-

estingness functions for Cfds are given by Chiang and

Miller [24]. Additionally, Andritsos et al. show how to

rank Fds according to their information content [9].

Furthermore, as we discussed earlier, post-processing

methods have been proposed to determine which of the

discovered inclusion dependencies are likely to be for-

eign keys; however, we are not aware of corresponding

techniques for uniques and Fds.

6 Profiling Tools

Whenever data are too voluminous to fit on a screen or

a sheet of paper, data profiling is performed. Even lack-

ing explicit profiling tools, much can already be done

with data management tools, such as spreadsheet soft-

ware, SQL queries, search-capabilities of text-editors or

simply by “eyeballing” the data. Such methods to be-

come acquainted with a new set of data are probably

familiar to most readers. The simple method of sort-

ing the values of a column can already reveal minimum

and maximum values, and scrolling through that sorted

data intuits the value distribution, including the num-

ber of null values, which are typically sorted to the very

beginning or end, and the uniqueness of a column. Find-

ing the median or average values requires additional cal-

culations, whereas it is infeasible to detect dependencies

with such simple means.

To allow a more powerful and integrated approach

to data profiling, software companies have developed

data profiling tools, mostly to profile data residing in

relational databases. Most tools discussed in this survey

are part of a larger software suite, either for data inte-

gration or for data cleansing. We first give an overview

of tools that were created in the context of a research

project (see Table 7 for a listing). Then we give a brief

glimpse of the vast set of commercial tools with profil-

ing capabilities (see Table 8 for a listing).

6.1 Research tools

In the research literature, data profiling tools are of-

ten embedded in data cleaning systems. For example,

the Bellman [38] data quality browser supports column

analysis (counting the number of rows, distinct values,

and NULL values, finding the most frequently occurring

values, etc.), and key detection (up to four columns).

It also provides a column similarity functionality that

finds columns whose value or n-gram distributions are

similar; this is helpful for discovering potential foreign

keys and join paths. Furthermore, an interesting ap-

plication of Bellman was to profile the evolution of a

database using value distributions and correlations [37]:

which tables change over time and in what ways (inser-

tions, deletions, modifications), and which groups of ta-

bles tend to change in the same way. The Potters Wheel

tool [122] also supports column analysis, in particular,

detecting data types and syntactic structures/patterns.

Data profiling functionality is also included in the

MADLib toolkit for scalable in-database analytics [71],

including column statistics, such as count, count dis-

tinct, minimum and maximum values, quantiles, and

the k most frequently occurring values.

Recent data quality tools are dependency-driven:

classical dependencies, such as Fds and Inds, as well

as their conditional extensions, may be used to express

the intended data semantics, and dependency violations

may indicate possible data quality problems. Most re-

search systems require users to supply data quality rules

and dependencies, such as GDR [138], Nadeef [34], Se-

mandaq [45] and StreamClean [84]. These systems focus

on languages for specifying rules and generating repairs.

However, data quality rules are not always known apri-

ori in unfamiliar and undocumented datasets, in which

case data profiling, and dependency discovery in par-

ticular, is an important pre-requisite to data cleaning.

Notably, many of these systems perform a focused pro-

filing of counting the number of inconsistent tuples with

respect to the given rules.

There are at least two research prototype systems

that perform rule discovery to some degree: Data Audi-

tor [58] and RuleMiner [28]. Data Auditor requires an

Fd as input and generates corresponding Cfds from the

data. Additionally, Data Auditor considers Fds simi-

lar to the one that is provided by the user and gener-

ates corresponding Cfds. The idea is to see if a slightly

modified Fd can generate a more suitable Cfd for the

given relation instance. On the other hand, RuleMine

does not require any rules as input and instead it is

designed to generate all reasonable rules from a given

dataset. RuleMiner expresses the discovered rules as de-

nial constraints, which are universally-quantified first

order logic formulas that subsume Fds, Cfds, Inds and

many others. Some of the rules it finds are instance-

specific and therefore more general than those a typical

data profiling tool would find; e.g., in a database of

income tax records, RuleMiner might find that if one

person, A, has a higher salary than another, B, then

Person A must have a higher tax rate than Person B.
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Table 7 Research tools with data profiling capabilities.

Tool Main goal Profiling capabilities

Bellman [38] Data quality browser Column statistics, column similarity, candidate key discovery
Potters Wheel [122] Data quality, ETL Column statistics (including value patterns)
Data Auditor [58] Rule discovery Cfd and Cind discovery
RuleMiner [28] Rule discovery Denial constraint discovery
MADLib [71] Machine learning Simple column statistics

6.2 Commercial tools

Because data profiling is such an important capabil-

ity for many data management tasks, there are var-

ious commercial data profiling applications. In many

cases, they are a part of a data quality / data cleans-

ing tool suite, to support the use case of profiling

for frequent patterns or rules and then cleaning those

records that violate them. In addition, most Extract-

Transform-Load tools have some profiling capabilities.

Table 8 mentions prominent examples of current

commercial tools, together with their capabilities and

application focus, based on the respective product doc-

umentations. It is beyond the scope of this survey to

provide a market overview or compile feature matrices.

We also deliberately refrain from providing static URLs

for the various products, because commercial websites

are too fickle.

Finally, and as mentioned before, every database

management system collects and maintains base statis-

tics about the tables it manages. However, they do not

readily expose those metadata, the metadata are not

always up-to-date and sometimes based only on sam-

ples, and their scope is usually limited to simple counts

and cardinalities.

7 Next Generation Profiling

Recent trends in data management have added new

challenges but also opportunities for data profiling.

First, under the big data umbrella, industry and re-

search have turned their attention to data that they do

not own or have not made use of yet. Data profiling

can help assess which data might be useful and reveals

the yet unknown characteristics of such new data. Sec-

ond, much of the data that shall be exploited is of non-

traditional type for data profiling, i.e., non-relational,

non-structured (textual), and heterogeneous. And it is

often truly “big”, both in terms of schema and in terms

of data. Many existing profiling methods cannot ade-

quately handle that kind of data: Either they do not

scale well, or there simply are no methods yet. Third,

different and new data management architectures and

frameworks have emerged, including distributed sys-

tems, key-value stores, multi-core- or main-memory-

based servers, column-oriented layouts, streaming in-

put, etc. We discuss some of these trends and their im-

plications toward data profiling. A more elaborate over-

view of upcoming challenges of data profiling is in [108].

7.1 Profiling for integration

An important use case of traditional data profiling

methods is data integration. Knowledge about the

properties of different data sources is important to cre-

ate correct schema mappings and data transformations,

and to correctly standardize and cleanse the data. For

instance, knowledge of inclusion dependencies might

hint upon ways to join two yet unrelated tables.

However, data profiling can reach beyond such sup-

portive tasks and assess the integrability or ease of inte-

gration of datasets, and thus also indicate the necessary

integration effort, which is vital to project planning.

Integration effort might be expressed in terms of simi-

larity, but also in terms of man-months or in terms of

which tools are needed.

Like integration projects themselves, integrability

has two dimensions, namely schematic fit and data fit.

Schematic fit is the degree to which two schemata com-

plement and overlap each other and can be determined

using schema matching techniques [44]. Smith et al.

have recognized that schema matching techniques often

play the role of profiling tools [127]: Rather than us-

ing them to derive schema mappings and perform data

transformation, they might assess project feasibility. Fi-

nally, the mere matching of schema elements might not

suffice as a profiling-for-integration result: Additional

column metadata can provide further details about the

integration difficulty.

Data fit is the (estimated) number of real-world ob-

jects that are represented in both datasets, or that are

represented multiple times in a single dataset and how

different they are. Such multiple representations are

typically identified using entity matching methods (also

known as record linkage, duplicate detection, etc.) [27].

However, estimating the number of matches without

actually performing the matching on the entire dataset

is an open problem.
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Table 8 Commercial data profiling tools/components with their primary capabilities and application areas.

Vendor and product Features → Focus

Attacama DQ Analyzer Statistics, patterns, uniques → Data exploration, ETL
IBM InfoSphere Information Ana-
lyzer

Statistics, patterns, multi-column dependencies → Data exchange, integration,
cleansing

Informatica Data Quality Structure, completeness, anomalies, dependencies → Business rules, cleansing
Microsoft SQL Server Data Profil-
ing Task

Statistics, patterns, dependencies → ETL, cleansing

Oracle Enterprise Data Quality Statistics, patterns, multi-column dependencies, text profiling → Quality assess-
ment, business rules, cleansing

Paxata Adaptive Data Preparation Statistics, histograms, semantic data types → Exploration, cleansing, sharing
SAP Information Steward Statistics, patterns, semantic data types, dependencies → ETL, modeling, cleansing
Splunk Enterprise / Hunk Patterns, data mining → Search, analytics, visualization
Talend Data Profiler Statistics, patterns, dependencies → ETL, cleansing
Trifacta Statistics, patterns → Quality assessment, data transformation

7.2 Profiling non-relational data

With the rapid growth of the World Wide Web, semi-

structured data, such as XML and Rdf data, and non-

structured data, such as text document corpora, have

become more important. The more flexible structure of

non-relational datasets opens new challenges for pro-

filing algorithms. So far, most methods apply only to

or were developed for relational data. Below, we give

an overview of both existing work that applies tra-

ditional profiling algorithms, as well as existing work

about data-model-specific profiling approaches, to non-

relational data. We focus on the three most relevant

non-relational data formats: XML, Rdf, and text doc-

uments.

7.2.1 XML

XML is the quasi-standard for exchanging data on the

Web. Many applications, especially Web services, pro-

vide their results as XML documents. Because the XML

structure explicitly contains mark-up and schema infor-

mation, different profiling approaches have to be con-

sidered. Apart from that, Web services themselves are

accessible through XML documents, such as WSDL and

SOAP files, which are also worth profiling for Web ser-

vice inspection and categorization.

There has already been a number of research ap-

proaches and proposals with a focus on statistical anal-

ysis of XML-formatted data. They concentrate either

on the DTD structure, the XSD schema structure, or

the inherent structure of XML documents. The analysis

concentrates on gathering statistics about the number

of root elements, attributes, the depth of content mod-

els, etc. [26, 105,106,124].

Further approaches focus on algorithms that iden-

tify traditional relational dependencies in XML data.

While Vincent et al. extend the notion of Fds to XML

data [132], Yu et al. present an approach for discovering

redundancies based on identified XML Fds [140]. There

have also been adaptations of unique and key discovery

concepts and algorithms to XML data [22]. Due to the

more relaxed structure of XML, these approaches iden-

tify approximate keys [62] or validate the consistency

of the identified keys against XSD definitions [10].

As many XML documents do not refer to a specific

schema, a relevant application of profiling approaches

is to support the process of schema extraction [17, 69].

Additionally, the vast amount of existing documents

do not always comply to specified syntactical rules [88],

which can be identified via appropriate profiling tech-

niques.

7.2.2 RDF

Although profiling tasks for XML data can easily be

adapted to Rdf datasets and vice versa, the require-

ment for Rdf data to be machine readable and its im-

portant use case Linked Open Data (Lod) give rise to

Rdf-specific challenges for data profiling. There are al-

ready some tools that generate metadata for a given

Rdf dataset. For example, LODStats is a stream-based

approach for gathering comprehensive statistics about

Rdf datasets [12].

ProLod++ provides additional functionalities by

applying clustering and rule mining techniques [1].

When profiling Rdf data, there are many interesting

metadata beyond simple statistics and patterns of Rdf

statement elements, including synonymously used prop-

erties [4], inverse relationships of properties, the con-

formity and consistence of Rdf structured data to the

corresponding ontology [2], and the distribution of lit-

erals and de-referenceable resource Uris from different

namespaces.

Because of the heterogeneity of interlinked sources,

it is vital to identify where specific facts come from

and how reliable they are. Therefore, another interest-
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ing task for profiling Rdf data is provenance analy-

sis [18].

7.2.3 Text

Many text analysis approaches and applications can

be regarded as text profiling tasks. Statistical methods

are used for tasks, such as information extraction [125],

part-of-speech tagging [20], and text categorization [83].

Specifically, in the field of author attribution, there

has been research on defining interesting features, such

as word-length distributions, average number of sylla-

bles, etc. [73]. Additionally, linguistic metrics, such as

distinctiveness, type-token-ratio, and Simpson’s index

have been proposed to measure the style and diversity

of text documents. The task of profiling can target sin-

gle documents, such as a paper or a book, as well as sets

of documents, such as Web document corpora, product

reviews, or user comments. More sophisticated appli-

cations that use metadata generated through profiling

include sentiment analysis and opinion mining [93,112].

7.3 Profiling dynamic data

Data profiling describes an instance of a dataset at

a particular time. Since many applications work on

frequently-changing data, it is desirable to re-profile a

dataset after a change, such as a deletion, insertion, or

update, in order to obtain up-to-date metadata. Sim-

ple aggregates are easy to maintain incrementally, but

many statistics needed for column analysis, such as dis-

tinct value counts, cannot be maintained exactly using

limited space and time. For these aggregates, stream

sketching techniques [53] may be used to maintain ap-

proximate answers. There are also techniques for con-

tinuously updating discovered association rules [131]

and clusters [43].

Dependency detection may be too time-consuming

for repeated execution on the entire dataset. Thus, it is

necessary to incrementally update the metadata with-

out processing the complete dataset again. One exam-

ple is Swan, an approach for unique discovery on dy-

namic datasets with insertions and deletions [5] as re-

ported in Section 5.1.4. Also, Wang et al. present an ap-

proach for maintaining discovered Fds after data dele-

tions [134]. From a data cleaning standpoint, there are

solutions for incremental detection of Fd and Cfd vio-

lations [50], and incremental data repairing with respect

to Fds and Cfds [30]. In general, incremental solutions

for Fds, Cfds, Inds, and Cinds on growing and chang-

ing datasets remain challenges for future research.

7.4 Profiling on new architectures

There are at least two database architecture trends that

affect profiling. The first is column versus row storage.

Column-store systems appear to have a natural com-

putational advantage, at least in terms of the column

analysis tasks we discussed in Section 3, since they can

directly fetch the column of interest and compute statis-

tics on it. However, if all columns are to be profiled,

the entire dataset must be read and the only remain-

ing advantage of column stores may be their potential

compression. The second trend is that of distributed

and cloud data management. This introduces additional

profiling challenges, such as combining statistics from

multiple nodes into final per-column analysis. There has

been some work on detecting Fd and Cfd violations in

a distributed database [48, 50], but many other prob-

lems in this space, such as efficient dependency detec-

tion in distributed data, remain open.

7.5 Visualization

Because data profiling mostly targets human users, ef-

fectively visualizing any profiling results is of utmost

importance. Only then can users interpret results and

react to them. A suggestion for a visual data profil-

ing tool is the Profiler system by Kandel et al. [81]. A

strong cooperation between the database community,

which produces the data and metadata to be visualized,

and the visualization community, which enables users

to understand and make use of the data, is needed.

8 Summary

In this article, we provided a comprehensive survey of

the state-of-the-art in data profiling: the set of activi-

ties and processes to determine metadata about a given

database. We discussed single-column profiling tasks

such as identifying data types, value distributions and

patterns, and multi-column tasks such as detecting var-

ious kinds of dependencies. As the amount of data and

users who require access to data increase, efficient and

effective data profiling will continue to be an impor-

tant data management problem in research and prac-

tice. While many data profiling algorithms have been

proposed and implemented in research prototypes and

commercial tools, further work is needed, especially in

the context of profiling new types of data, support-

ing and leveraging new data management architectures,

and interpreting and visualizing data profiling results.
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