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Abstract

Cleaning data of errors in structure and content is im-
portant for data warehousing and integration. Current
solutions for data cleaning involve many iterations of
data “auditing” to find errors, and long-running trans-
formations to fix them. Users need to endure long
waits, and often write complex transformation scripts.

We present Potter’s Wheel, an interactive data clean-
ing system that tightly integrates transformation and
discrepancy detection. Users gradually build trans-
formations to clean the data by adding or undoing
transforms on a spreadsheet-like interface; the effect
of a transform is shown at once on records visible on
screen. These transforms are specified either through
simple graphical operations, or by showing the de-
sired effects on example data values. In the back-
ground, Potter’s Wheel automatically infers structures
for data values in terms of user-defined domains, and
accordingly checks for constraint violations. Thus
users can gradually build a transformation as discrep-
ancies are found, and clean the data without writing
complex programs or enduring long delays.

1 Introduction
Organizations accumulate much data that they want to access
and analyze as a consolidated whole. However the data of-
ten has inconsistencies in schema, formats, and adherence to
constraints, due to many factors including data entry errors
and merging from multiple sources [6, 13]. The data must be
purged of such discrepancies and transformed into a uniform
format before it can be used. Suchdata cleaningis a key
challenge in data warehousing [6]. Data transformation is
also needed for extracting data from legacy data formats, and
for Business-to-Business Enterprise Data Integration [26].

1.1 Current Approaches to Data Cleaning

Data cleaning has three components: auditing data to find
discrepancies, choosing transformations to fix these, and ap-
plying the transformations on the dataset. There are currently
many commercial solutions for data cleaning (e.g., see [9] for
an overview). They come in two forms: auditing tools and
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transformation tools. The user first audits the data to detect
discrepancies using an auditing tool like Unitech Systems’
ACR/Data or Evoke Software’sMigration Architect. Then
she either writes a custom script or uses anETL (Extrac-
tion/Transformation/Loading) tool likeData Junction or As-
cential Software’sDataStage to transform the data, fixing
errors and converting it to the format needed for analysis.
The data often has many hard-to-find special cases, so this
process of auditing and transformation must be repeated un-
til the “data quality” is good enough. This approach has two
problems.

• Lack of interactivity:Transformation is typically done as
a batch process, operating on the whole dataset without
any feedback. This leads to long, frustrating delays during
which users have no idea if a transformation is effective.

Such delays are compounded by a decoupling of transfor-
mation and discrepancy detection – these are often done as
separate steps, with separate software. This forces users to
wait for a transformation to finish before they can check if
it has fixed all anomalies. More importantly, somenested
discrepanciesarise only after others have been fixed.E.g.,
a typo in a year field such as “19997” can be found (by
running a suitable algorithm on the year values) only af-
ter all dates have been converted to a uniform date type –
until then, the year values cannot be isolated from the date
strings. Thus the decoupling makes it hard to find multi-
ple discrepancies in one pass, leading to many unnecessary
iterations.

• Need for much user effort:Both transformation and dis-
crepancy detection need significant user effort, making
each step of the cleaning process painful and error-prone.

Commercial ETL tools typically support only some re-
stricted transforms1 between a small set of formats via
a GUI, and provide ad hoc programming interfaces for
general transforms (these are essentially libraries of con-
versions between standard formats:e.g. Data Junction’s
DJXL). Even system-supported transforms often need to
be specified in sophisticated ways that involve regular ex-
pressions or grammars (Section 4.3).

The discrepancy detection technique must match the data
domain – it may be a standard method like spell-checking,
or a specialized one like spotting non-standard names for
automobile parts. Unfortunately data values are often
composite structures of values from different domains, like
“Rebecca by Daphne du Maurier, et. al Hardcover (April
8, 1948)$22.00” (from Amazon.com search results for

1 We use transform as a noun to denote a single operation, and transfor-
mation to denote a sequence of operations.



Daphne Du Maurier). Hence users must either write cus-
tom programs for each such structure, or design transforms
to parse data values into atomic components for anomaly
detection, and then back into unified wholes for output.

1.2 Potter’s Wheel Approach

Data cleaning is intrinsically a complex, knotty task, with
many interrelated problems. Any solution must support
transformation and discrepancy detection in an integrated
fashion. On one hand, the transforms provided must be gen-
eral and powerful enough to do most tasks without explicit
programming, and the system must extensibly support the
variety of discrepancy detection algorithms applicable in dif-
ferent domains. On the other hand, since the cleaning pro-
cess involves user interaction, the system must support trans-
formation and discrepancy detection through simple specifi-
cation interfaces and with minimal delays.

Potter’s Wheelis an interactive data cleaning system that
integrates transformation and discrepancy detection in a sin-
gle interface. The software is publicly available from Berke-
ley [22], and some of the main ideas are also used in Cohera’s
Content WorkBench [8].

Users gradually build transformations in Potter’s Wheel
by composing and debugging transforms, one step at a time,
on a spreadsheet-like interface (see Figure 1; the details will
be explained in later sections). Transforms are specified
graphically, their effect is shown immediately on records vis-
ible on screen, and they can be undone easily if their effects
are undesirable. Discrepancy detection is done automatically
in the background,on the latest transformed view of the data,
and anomalies are flagged as they are found. This pipelin-
ing of transformation and discrepancy detection makes data
cleaning a tight, closed loop where users can gradually de-
velop and refine transformations as discrepancies are found.

1.2.1 Interactive Transformation
From the literature on transformation languages (e.g., [1,
7, 16]) we have adapted a small set of transforms that sup-
port common transformations without explicit programming.
Most of these are simple and easy to specify graphically.
However some transforms used to parse and split values into
atomic components are quite complex. Their specification
requires users to enter regular expressions or grammars, and
in some cases write custom programs (Section 4.3). Instead
Potter’s Wheel lets users specify the desired results on exam-
ple values, and automatically infers a suitable transform, us-
ing the structure extraction techniques described below. We
describe such graphical specification, and the incremental
application of these transforms, in Section 4.

Potter’s Wheel compiles a sequence of transforms into a
program after the user is satisfied, instead of applying them
piecemeal over many iterations. Users specify or undo these
transforms in orders they find natural, often only when dis-
crepancies are found, and this exploratory behavior could re-
sult in redundant or sub-optimal transforms. In addition, the
main cost in the transformation is that of memory allocation
and copying. In the full version of the paper [22], we discuss
how the final sequence of transforms can be converted to a
more optimal form, including ways of pipelining transforms
to minimize memory allocations and copies.

Figure 1: A snapshot of the Potter’s Wheel user interface on
flight delay data from FEDSTATS (www.fedstats.gov).

1.2.2 Extensible Discrepancy Detection

Potter’s Wheel allows users to define customdomains, and
corresponding algorithms to enforce domain constraints.
However since the data values are often composite struc-
tures, the system needs to automatically parse a string value
into a structure composed of user-defined domains, and then
apply suitable discrepancy detection algorithms.

This is similar to the problem of inferring regular expres-
sion structures from examples, that has been addressed in
the machine learning literature (e.g., [20, 5]). We are how-
ever not interested in abstract structures like regular expres-
sions, but rather in structures in terms of user-defined do-
mains. For example, parsing flight records like “Taylor, Jane,
JFK to ORD on April 23, 2000 Coach” as “[A-Za-z, ]∗ [A-
Z]3 to [A-Z]3 on [A-Za-z]* [0-9]*, [0-9]* [A-Za-z]*” does
not help much with detecting anomalies that satisfy the ba-
sic pattern. Whereas parsing it as “[A-Za-z, ]*<Airport>
to <Airport> on <Date> <Class>” would allow us to
detect logical errors like false airport codes or dates.

We believe that application developers will specify use-
ful application-specific domains and corresponding domain
constraints (like date, airport code, construction part name),
provided Potter’s Wheel can automatically infer patterns in
terms of these domains and apply suitable algorithms. The
difficulty is that these domains are typically not specified as
explicit patterns but rather as encapsulated set-membership
functions that Potter’s Wheel cannot understand. A second
unique feature of pattern learning in the data cleaning con-
text is that the values will have discrepancies in their struc-
ture itself; hence Potter’s Wheel can only detect approximate
structures. There is a tradeoff here between choosing struc-
tures that match most of the values in a column and choosing
structures that do not overfit the data values. Section 3 de-
scribes how the Minimum Description Length principle [24]
can be used to extract approximate structures for values in a
way that balances this tradeoff.

2 Potter’s Wheel Architecture

The main components of the Potter’s Wheel architecture
(Figure 2) are aData Source, a Transformation Enginethat
applies transforms along 2 paths, anOnline Reordererto
support interactive scrolling and sorting at the user inter-
face [23, 21], and anAutomatic Discrepancy Detector.



2.1 Data Source

Potter’s Wheel accepts input data as a single, pre-merged
stream, that can come from an ODBC source or any ASCII
file descriptor (or pipe). The ODBC source can be used to
query data from DBMSs, or even from distributed sources
via middleware. In practice, schematic differences between
sources will restrict the tightness of the integration via a
query (even Figure 1 shows poor mapping in theSourceand
Destinationcolumns). Potter’s Wheel will flag areas of poor
integration as errors, and the user can transform the data,
moving values across columns to unify the data format.

When reading from ASCII files, each record is viewed
as a single wide column. The user can identify col-
umn delimiters graphically and split the record into con-
stituent columns. Such parsing is more complex and time-
consuming on poorly structured data (such as from web
pages). Potter’s Wheel helps this process through aSplit
transform that can be specified by example (Section 4). Col-
umn types and delimiters can also be specified in a metadata
file. Once a dataset has been parsed, the transformation can
be stored as a macro for easy application on similar datasets.

2.2 Interface used for Displaying Data

Data read from the input is displayed on a Scalable Spread-
sheet interface [21] that allows users to interactively re-sort
on any column, and scroll in a representative sample of the
data, even over large datasets. When the user starts Potter’s
Wheel on a dataset, the spreadsheet interface appears imme-
diately, without waiting until the input has been completely
read. This is important when transforming large datasets or
never-ending data streams.

The interface supports this behavior using an Online Re-
orderer [23] that continually fetches tuples from the source
and divides them into buckets based on a (dynamically com-
puted) histogram on the sort column, spooling them to disk if
needed. When the user scrolls to a new region, the reorderer
picks a sample of tuples from the bucket corresponding to the
scrollbar position and displays them on screen. Thus users
can explore large amounts of data along any dimension. Ex-
ploration helps users spot simple discrepancies by observing
the structure of data as values in the sort-column change.

2.3 Transformation Engine

Transforms specified by the user need to be applied in two
scenarios. First, they need to be applied when records are
rendered on the screen. With the spreadsheet user interface
this is done when the user scrolls or jumps to a new scrollbar
position. Since the number of rows that can be displayed on
screen at a time is small, users perceive transformations as
being instantaneous (this clearly depends on the nature of the
transforms; we return to this issue in Section 4.2). Second,
transforms need to be applied to records used for discrepancy
detection because, as argued earlier, we want to check for
discrepancies on transformed versions of data.

2.4 Automatic Discrepancy Detector

While the user is specifying transforms and exploring the
data, the discrepancy detector runs in the background, apply-
ing appropriate algorithms to find errors in the data. Hence
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Figure 2: Potter’s Wheel Architecture

tuples fetched from the source are transformed and sent to
the discrepancy detector, in addition to being sent to the
Online Reorderer. The discrepancy detector first parses
values in each field intosub-componentsaccording to the
structure inferred for the column. The structure of a col-
umn is a sequence of user-defined domains, and is inferred
as soon as it is formed (i.e., either when the input stream
is started or when a new column is formed by a trans-
form), as we describe in Section 3.2. Then suitable algo-
rthims are applied for each sub-component, depending on
its domain. For example, if the structure of a column is
<number><word><time> and a value is19 January
06:45, the discrepancy detector finds19, January, and06:45
as sub-components belonging to the<number>, <word>,
and<time> domains, and applies the detection algorithms
specified for those domains.

2.5 Compiling a Sequence of Transforms
After the user is satisfied with the sequence of transforms,
Potter’s Wheel can compile it into a transformation, and ex-
port it as either a C or Perl program, or a Potter’s Wheel
macro – the latter can be invoked on other datasets to reap-
ply the transformation without respecifying each transform.
In future we want to support compilation into declarative lan-
guages like SQL or XSLT, so that a database system could
perform further optimizations.

3 Extensible Discrepancy Detection
Potter’s Wheel allows users to define arbitrarydomains,
along with corresponding discrepancy detection algorithms.
We describe the API for specifying domains in Section 3.1.
Based on these domains, the system automatically infers ap-
propriate structures for values in each column (Section 3.2).
Some of the domains in this structure are thenparameterized
for the specific column values, as discussed in Section 3.3.
Once this detailed structure is inferred, the system parses val-
ues and sends individual components to suitable discrepancy
detection algorithms (Section 2.4).

3.1 Domains in Potter’s Wheel

Domains in Potter’s Wheel are defined through the interface
shown in Figure 3. The only function required to be im-
plemented is an inclusion functionmatch to identify values
in the domain. The optionalcardinality function is helpful
in structure extraction as we describe in Section 3.2.up-



public abstract class Domain {
/** Required Inclusion Function — Checks if value satisfies domain constraints. (Sections 3.1) */
public abstract boolean match(char *value);

/** Optional function – finds the number of values in this domain with given length. This could vary
based on parameterization. (Sections 3.2 and 3.3) */

public int cardinality(int length);

/** Optional function – updates any state for this domain using the given value. ( Sections 3.1 and 3.3) */
public void updateStats(char* value);

/** Optional function – checks if a given value is a discrepancy, with a certain probability. Typically needs
to know the total number of tuples in the data set (e.g.see [14]). (Section 3.1) */

public float matchWithConfidence(char *value, int dataSize);

/** Optional function – checks if one pattern is redundant after another. (Section 3.2) */
public boolean isRedundantAfter(Domain d);

}
Figure 3: API for user-defined domains. These functions are explained in the sections indicated.

dateStats is mainly used to parameterize the domains (Sec-
tion 3.3). It can also be used by a discrepancy detection algo-
rithm to accumulate state about the data. This accumulated
state can also be used to catchmulti-row anomalies where
a set of values are individually correct, but together violate
some constraint. For example, a duplicate elimination algo-
rithm could useupdateStats to build an approximate hash ta-
ble or Bloom filter of the values seen so far. ThematchWith-
Confidence method is helpful for probabilistic and incremen-
tal discrepancy detection algorithms, such as sampling based
algorithms (e.g. [14]). TheisRedundantAfter method is used
while enumerating structures, as described in Section 3.2.

Potter’s Wheel provides the following default domains:
arbitrary ASCII strings (henceforth calledξ∗), character
strings (calledWords; likewiseAllCapsWordsandCapWords
refer to words with all capitals and capitalized words respec-
tively), Integers, sequences ofPunctuation, C-style Iden-
tif iers, floating point values (henceforth calledDoubles),
English words checked according toispell (IspellWords),
commonNames(checked by referring to the online 1990
census results),Money, and a generic regular-expression do-
main that checks values using the PCRE library.

3.2 Structure Extraction

A given value will typically be parseable in terms of
the default and user-defined domains in multiple ways.
For example,March 17, 2000 can be parsed asξ∗, as
[A-Za-z]∗ [0-9]∗, [0-9]∗, or as [achrM]∗ [17]∗, [20]∗, to
name a few possible structures. Structure extraction involves
choosing the best structure for values in a column. Formally,
given a set of column valuesv1, v2, . . . , vn and a set of do-
mainsd1, d2, . . . , dm, we want to extract a suitable structure
S = ds1ds2 . . . dsp , where1 ≤ s1 . . . sp ≤ m.

All that we know about these domains is from the func-
tions defined in Figure 3 – even among these, only the set-
membership function (match) may be available. In general
the inferred structure must be approximate, since the data
could have errors in the structure itself. We first describe
how to evaluate the appropriateness of a structure for a set of
values and then look at ways of enumerating all structures so
as to choose the best one.

3.2.1 Evaluating the Suitability of a Structure
There are three characteristics that we want in a structure for
the column values.
• Recall:The structure should match as many of the column
values as possible.
• Precision:The structure should match as few other values
as possible.
• Conciseness:The structure should have minimum length.

The first two criteria are standard IR metrics for evaluat-
ing the effectiveness of a pattern [27]. We need to consider
recall because the values might be erroneous even in struc-
ture; all unmatched values are considered as discrepancies.
Considering precision helps us avoid overly broad structures
like ξ∗ that do not uniquely match this column.

The last criterion of conciseness is used to avoid over-
fitting the structure to the example values. For instance, we
want to parseMarch 17, 2000 as [A-Za-z]∗ [0-9]∗, [0-9]∗

rather than asM a r c h 1 7 , 2 0 0 0.
This last example highlights the importance of allowing

user-defined domains in the alphabet from which we create
the structure. For instance if we did not haveWord andIn-
tegeras domains in the alphabet,M a r c h 1 7 , 2 0 0 0
would be the better structure than[A-Za-z]∗ [0-9]∗, [0-9]∗

since it has the same recall (100%), better precision (since it
avoids matching any other date), and smaller pattern length
than [A-Za-z]∗ [0-9]∗, [0-9]∗. Intuitively, the latter is a
more concise pattern, but this isonly because we think of
the[A-Za-z]∗ as the domain Word, rather than as the Kleene
closure of a set of 56 characters.

These three criteria are typically conflicting, with broad
patterns likeξ∗ having high recall and conciseness but low
precision, and specific patterns having high precision but low
conciseness. An effective way to make the tradeoff between
over-fitting and under-fitting is through the Minimum De-
scription Length (MDL) principle [24], that minimizes the
total length required to encode the data using a structure.

Description Length: A metric for structure quality
We now derive the description length (DL) for encoding a set
of values with a structure, as a measure of the appropriate-
ness of the structure; better structures result in smaller DLs.
According to the MDL principle, the DL for using a structure



to describe a set of column values is defined as: the length of
the theory (the structure definition) plus the length required
to encode the values given the structure.

We need a DL that can encapsulate the goals of Recall,
Precision, and Conciseness (as penalties). Conciseness is
directly captured by the length of theory for the structure.
For values that match the structure, the length required for
encoding the data values captures the Precision. We tackle
erroneous data values by positing that values not matching
the structure are encoded explicitly by writing them out, i.e.
using the structureξ∗. The latter encoding is typically more
space-intensive since it assumes no structure, forcing values
to be written out explicitly. Thereby we capture Recall.

Example: Consider a structure ofWord Integer Integerand
a value ofMay 17 2025. The number of bits needed to
encode the structure is3 log (number of domains). Then
we encode the value by first specifying the length of
each sub-component and then, for each sub-component,
specifying the actual value from all values of the same
length. In this case, the sub-component lengths are
3, 2, and 4. The domains are strings over alphabets
of size 52, 10, and 10 ([a-zA-Z] and [0-9]). Thus
the description length is: 3 log(number of domains) +
3 log (maximum length of values in each sub-component) +
log 523 + log 102 + log 104.

In the above example, we are able to calculate the lengths
of the value encodings for integers and words because we
know the properties of the domains. We now look at encod-
ings for structures of arbitrary domains. Consider a structure
S of p domains,ds1ds2 . . . dsp . Let |T | denote the cardinality
of any setT . The description length of a stringvi of length
len(vi) usingS is DL(vi, S) =

length of theory forS + length to encodevi givenS

Givenm domains, we can represent each domain withlog m
bits. Letf be the probability thatvi matches the structureS.
If vi does not match, we encode it explicitly. Thus,

DL(vi, S) = p log m + (1 − f)(log |ξlen(vi)|)
+ f(space to expressvi with S)

with the three parts of the right hand side representing
penalties for Conciseness, Recall, and Precision respec-
tively. Let v1, v2, . . . vn be the values in the column, and
AvgV alLen =

∑
1≤j≤n len(vj) be the average length of

the values in the column. It is easy to see that the average
space needed to encode the values is

DL(S) = p log m + (1 − f)(log |ξAvgV alLen|)
+ f(avg. space to expressv1 . . . vn usingS)

Just as in the example, we express the valuesvi usingS
by first encoding the lengths of their components in each do-
main and then encoding the actual values of the components.
For any stringw that falls in a domaindu, let len(w) be its
length, and letsp(w|du) be the space required to uniquely
encodew among all thelen(w)-length strings indu.

Suppose that valuevi matches the structureS =
ds1ds2 . . . dsp through the concatenation of sub-components
vi = wi,1wi,2 . . . wi,p, with wi,j ∈ dsj ∀1 ≤ j ≤ p (this
parsing ofvi is itself not easy; we discuss efficient parsing
in Section 4.3.2). LetMaxLen be the maximum length of
the values in the column. Then the average space required

to encode the values in the column is,

p log m+(f/n)×∑n
i=1

(
p log MaxLen +

∑p
j=1 sp(wi,j |dsj )

)
+ (1 − f)(log |ξAvgV alLen|)

After some transformation this becomes
p logm + AvgV alLen log |ξ| + fp log MaxLen+(
f

n

) n∑
i=1

p∑
j=1

log
|values of lengthlen(wi,j) that satisfydsj |

|values of lengthlen(wi.j)|

The best way to compute the cardinality in the above ex-
pression is using theint cardinality(int length) function for the
domaindsj , if it has been defined. For other domains we ap-
proximate the fraction directly by repeatedly choosing ran-
dom strings of appropriate length and checking if they satisfy
dsj . Since these fractions are independent of the actual val-
ues, they can be pre-computed and cached.

If the length is too high we may need to check many val-
ues before we can estimate this fraction. Hence in the ab-
sence of a user-definedcardinality function, we compute the
fraction of matches for a few small lengths, and extrapolate
it to larger lengths assuming that the number of matches is a
strict exponential function of the string length.

3.2.2 Choosing the best structure
We have seen how to compute a description length that mea-
sures the suitability of a structure for a given set of values.
We now want to enumerate all structures that can match the
values in a column and choose the most suitable one. This
enumeration needs to be done carefully since since the struc-
tures are arbitrary strings from the alphabet of domains, and
it will be too expensive to enumerate all such strings.

We apply the algorithm of Figure 4 on a set of sample val-
ues from the column, and take the union of all structures enu-
merated thus. We use 100 values as a default; this has proven
adequate in all the cases we have encountered. During this
enumeration, we prune the extent of recursion by not han-
dling structures with meaningless combinations of domains
such as<word> <word> or <integer> <decimal>. These
are unnecessarily complicated versions of simpler structures
like <word> and<decimal>, and will result in structures
with identical precision and recall but lesser conciseness.
We identify such unnecessary sequences using theisRe-
dundantAfter(Domain d) method ofDomain that determines
whether this domain is redundant immediately after the given
domain.

Even though this is an exponential algorithm, pruning re-
duces the number of structures we enumerate for a column
considerably. As shown in Figure 5, the number of enumer-
ated structures is typically less than 10.

3.3 Structures with Parameterized Domains

So far the structures that we have extracted are simply strings
of domains. But the column values are often much more re-
stricted, consisting only of certain parameterizations of the
domains. For example, all the sub-components from a do-
main might have a constant value, or might be of constant
length, as shown in the examples of Figure 5.

Potter’s Wheel currently detects two parameterizations
automatically: domains with constant values and domains



/** Enumerate all structures of domainsds1 . . . dsp

that can be used to match a valuevi. */
void enumerate(vi , d1, . . . dp) {

Let vi be a string of charactersw1 . . . wm

for all domainsd matching prefixw1 . . . wk of vi

do enumerate(wk+1 . . . wm , ds1 , . . . dsp )
– avoid structures beginning with domains

d′ that satisfyd′.isRedundantAfter(d)
prependd to all structures enumerated above

}
Figure 4: Enumerating various structures for a set
of values

Example Column Value # StructuresFinal Structure Chosen
(Example erroneous values) Enumerated(Punc = Punctuation)
-60 5 Integer
UNITED, DELTA, AMERICAN etc. 5 IspellWord
SFO, LAX etc. (JFK to OAK) 12 AllCapsWord
1998/01/12 9 Int Punc(/) Int Punc(/) Int
M, Tu, Thu etc. 5 Capitalized Word
06:22 5 Int(len 2) Punc(:) Int(len 2)
12.8.15.147 (ferret03.webtop.com) 9 Double Punc(’.’) Double
”GET\b (\b) 5 Punc(”) IspellWord Punc(\)
/postmodern/lecs/xia/sld013.htm 4 ξ∗

HTTP 3 AllCapsWord(HTTP)
/1.0 6 Punc(/) Double(1.0)

Figure 5: Structures extracted for different kinds of columns, using the default
domains listed in Section 3.1. Structure parameterizations are given in parenthesis.

with values of constant length. Such parameterized struc-
tures are especially useful for automatically parsing the val-
ues in a column, when inferring Split transforms by example
(Section 4.3).

In addition, users can define domains that infer custom
parameterizations, using theupdateStats method. These do-
mains could use specialized algorithms to further refine the
structure of the sub-components that fall within their domain.
For example, the defaultIntegerdomain in Potter’s Wheel
computes the mean and standard deviation of its values and
uses these as parameters, to flag values that are more than 2
standard deviations away as potential anomalies. Likewise
a domain can accept all strings by default, but parameterize
itself by inferring a regular expression that matches the sub-
component values.

The description length for values using a structure often
reduces when the structure is parameterized. For the default
parameterizations of constant values and constant lengths it
is easy to adjust the formulas given in the previous section.
For custom parameterizations like the regular expression in-
ference discussed above, the user must define thecardinality
function based on the parameterization.

3.4 Example Structures Extracted
Consider the snapshot shown in Figure 1 containing flight
delay statistics. Figure 5 shows the structures extracted for
some of its column values, and also for some columns from a
web access log. We see that the dominant structure is chosen
even in the face of inconsistencies; thereby the system can
flag these structural inconsistencies as errors to the user, and
parse and apply suitable detection algorithms for other values
that match the structure.

Using these the system flags several discrepancies that we
had earlier added to the data. For example, the system flags
dates such as19998/05/31 in the date column of Figure 1 as
anomalies because theIntegerdomain for the year column
parameterizes with a mean of 2043.5 and a standard devia-
tion of 909.2. It finds the poor mapping in the Source and
Destination columns of Figure 1 as structural anomalies.

Figure 5 also shows that a column of IP addresses with
values like12.8.15.147 has its structure inferred asDou-
ble.Double, rather thanInteger.Integer.Integer.Integer. This
arises becauseDouble is a more concise structure than
Integer.Integer. This could be avoided either by defin-

ing a Short domain for values less than 255 (to form
Short.Short.Short.Short), or even by allowing a parameter-
ization of the formInteger (len≤ 3).

An interesting example of over-fitting is the choice of
IspellWordfor flight carriers. Although most flight carrier
names occur in theispell dictionary, some likeTWA do not.
Still IspellWord is chosen because it is cheaper to encode
TWA explicitly with a ξ∗ structure than to encode all carri-
ers with the next best structure,AllCapsWord. The system
flagsTWA as an anomaly – the user could choose to ignore
this, or specify a minimum Recall threshold to avoid over-
fitting. In any case, this example highlights the importance
of involving the user in the data cleaning process.

Figure 10 gives more examples of inferred structures.

4 Interactive Transformation

Having seen how Potter’s Wheel infers structures and iden-
tifies discrepancies, we turn our attention to its support for
interactive transformation. We want users to construct trans-
formations gradually, adjusting them based on continual
feedback. This breaks down into the following sub-goals:

Ease of specification: Transforms must be specifiable
through graphical operations rather than custom program-
ming. Moreover, in these operations, we want to avoid use
of regular-expressions or grammars and instead allow users
to specify transforms by example as far as possible.

Ease of interactive application:Once the user has specified
a transform, they must be given immediate feedback on the
results of its application so that they can correct it.

Undos and Data Lineage:Users must be able to easily undo
transforms after seeing their effect. In addition, the lineage
of errors must be clear –i.e.,errors intrinsic to the data must
be differentiable from those resulting from other transforms.

4.1 Transforms supported in Potter’s Wheel

The transforms used in Potter’s Wheel are adapted from ex-
isting literature on transformation languages (e.g. [16, 7]).
We describe them briefly here before proceeding to discuss
their interactive application and graphical specification. Ta-
ble 1 gives formal definitions for these transforms. Addi-
tional illustrative examples and proofs of expressive power
are given in the full version of the paper [22].



Transform Definition
Format φ(R, i, f) = {(a1, . . . , ai−1, ai+1, . . . , an, f(ai)) | (a1, . . . , an) ∈ R}
Add α(R, x) = {(a1, . . . , an, x) | (a1, . . . , an) ∈ R}
Drop π(R, i) = {(a1, . . . , ai−1, ai+1, . . . , an) | (a1, . . . , an) ∈ R}
Copy κ((a1, . . . , an), i) = {(a1, . . . , an, ai) | (a1, . . . , an) ∈ R}
Merge µ((a1, . . . , an), i, j, glue) = {(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an, ai ⊕ glue⊕ aj) | (a1, . . . , an) ∈ R}
Split ω((a1, . . . , an), i, splitter) = {(a1, . . . , ai−1, ai+1, . . . , an, left(ai, splitter), right(ai, splitter)) | (a1, . . . , an) ∈ R}
Divide δ((a1, . . . , an), i, pred) = {(a1, . . . , ai−1, ai+1, . . . , an, ai, null) | (a1, . . . , an) ∈ R ∧ pred(ai)} ∪

{(a1, . . . , ai−1, ai+1, . . . , an, null, ai) | (a1, . . . , an) ∈ R ∧ ¬pred(ai)}
Fold λ(R, i1, i2, . . . ik) = {(a1, . . . , ai1−1, ai1+1, . . . , ai2−1, ai2+1, . . . , aik−1, aik+1, . . . , an, ail) |

(a1, . . . , an) ∈ R ∧ 1 ≤ l ≤ k}
Select σ(R, pred) = {(a1, . . . , an) | (a1, . . . , an) ∈ R ∧ pred((a1, . . . , an))}
Notation: R is a relation withn columns.i, j are column indices andai represents the value of a column in a row.x and glue are
values.f is a function mapping values to values.x ⊕ y concatenatesx andy. splitter is a position in a string or a regular expression,
left(x, splitter) is the left part ofx after splitting by splitter. pred is a function returning a boolean.

Table 1: Definitions of the various transforms.Unfold is defined in the full paper [22].
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Figure 6: UsingFormat, Merge andSplit to clean name for-
mat differences

Value Translation
The Format transform applies a function to every value in
a column. We provide built-in functions for common oper-
ations like regular-expression based substitutions and arith-
metic operations, but also allow user defined functions. Col-
umn and table names can bedemotedinto column values us-
ing special characters in regular expressions; these are useful
in conjunction with theFold transform described below.

One-to-one Mappings of Rows
One-to-one transforms are column operations that transform
individual rows. As illustrated in Figures 6 and 7, they can
be used to unify data collected from different sources.

TheMerge transform concatenates values in two columns,
optionally interposing a constant (the delimiter) in the mid-
dle, to form a single new column.Split splits a column into
two or more parts, and is used typically to parse a value into
its constituent parts. The split positions are often difficult
to specify if the data is not well structured. We allow split-
ting by specifying character positions, regular expressions,
or by interactively performing splits on example values (Sec-
tion 4.3).

Drop, Copy, andAdd allow users to drop or copy a col-
umn, or add a new column. Occasionally, logically different
values (maybe from multiple sources) are bunched into the
same column, and we want to transform only some of them.
Divide conditionally divides a column, sending values into
one of two new columns based on a predicate.

Many-to-Many Mappings of Rows
Many-to-Many transforms help to tackle higher-order
schematic heterogeneities[18] where information is stored

partly in data values, and partly in the schema, as shown in
Figure 8. Fold ”flattens” tables by converting one row into
multiple rows, folding a set of columns together into one col-
umn and replicating the rest. ConverselyUnfold ”unflattens”
tables; it takestwo columns, collects rows that have the same
values for all the other columns, and unfolds the two chosen
columns. Values in one column are used as column names to
align the values in the other column. Figures 8 and 9 show
an example with student grades where the subject names are
demoted into the row viaFormat, grades areFolded together,
and thenSplit to separate the subject from the grade.Fold
andUnFold are adapted from the restructuring operators of
SchemaSQL [16], and are discussed in more detail in the
full paper [22].

Power of Transforms: As we prove in the full paper [22],
these transforms can be used to perform all one-to-many row
mappings of rows.Fold andUnfold can also be used tof latten
tables, converting them to a form where column and table
names are all literals and do not have data values. For a for-
mal definition of (un)flattening and an analysis of the power
of Fold andUnfold, see [16].

4.2 Interactive Application of Transforms

We want to apply the transforms on tuples incrementally, as
they stream in, so that the effects of transforms can be imme-
diately shown on tuples visible on the screen of the UI. It also
lets the system pipeline discrepancy detection on the results
of the transforms, thereby giving the interactivity advantages
described in the introduction.

Among the transforms discussed above, all the one-to-one
transforms as well as theFold transform are functions on a
single row. Hence they are easy to apply incrementally.

HoweverUnfold operates on a set of rows with match-
ing values. Since this could potentially involve scanning the
entire data, we do not allowUnfold to be specified graphi-
cally. For displaying records on the screen we can avoid this
problem by not showing a complete row but instead show-
ing more and more columns as distinct values are found, and
filling data values in these columns as the corresponding in-
put rows are read. Such progressive column addition in the
spreadsheet interface could confuse the user; hence we plan
to implement an abstraction interface where all newly cre-
ated columns are shown as one rolled up column. When
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the user clicks to unroll the column it expands into a set of
columns corresponding to the distinct values found so far.

4.3 Graphical Specification of Transforms

Transforms likeAdd, Drop, Copy, Fold, andMerge are sim-
ple to specify graphically. Users can highlight the desired
columns and pick the appropriate transform.

HoweverSplit is often hard to specify precisely.Splits
are needed to parse values in a column into consituent parts,
as illustrated in Figure 10. This is an important problem
for commercial integration products. Tools likeMicrosoft
SQL Server andAccess have wizards for parsing ASCII data
files with constant delimiters. There are many research and
commercial “wrapper-generation” tools (e.g.Araneus [12],
Cohera Net Query (CNQ) [8], Nodose [2]) that tackle this
problem for “screen-scraping” unstructured data found on
web pages. However these tools often require sophisticated
specification of the split, ranging from regular expression
split delimiters to context free grammars. But even these
cannot always be used to split unambiguously. For instance
in the first entry of Figure 10, commas occur both in delim-
iters and in the data values. As as result, users often have to
write custom scripts to parse the data.

4.3.1 Split by Example
In Potter’s Wheel we want users to be able to parse and split
values without specifying complex regular expressions or
writing programs. Instead we want to allow users to spec-
ify most splits by performing them on example values.

The user selects a few example valuesv1, v2, . . . , vn

and in a graphical, direct-manipulation [25] way shows
the positions at which these values are to be split, into
sub-components(x1,1x1,2 . . . x1,m), (x2,1 . . . x2,m), . . . ,
(xn,1 . . . xn,m) respectively. As is done during discrepancy
detection, the system infers a structure for each of them new
columns using MDL, and uses these structures to split the
rest of the values. These structures are general, ranging from
simple ones like constant delimiters or constant length de-
limiters, to structures involving parameterized user-defined
domains like “Word(len 3) Word(len 3) Integer(len 2) time
Integer(len 4)” (for the output of the UNIXdate command).
Therefore they are better than simple regular expressions at
identifying split positions.

Figure 10 contains some sample structures that Potter’s
Wheel extracts from example splits on different datasets. We
see that even for the ambiguous-delimiter case described ear-
lier, it can extract good structures that can be used to split
unambiguously.

/** Split a stringq (of charactersw1 . . . wm) using structures
* S1, S2, . . . Sk.*/

void LeftRight(q,S1, . . . Sk) {
If k == 0, check ifq is empty
for all prefixesw1 . . . wj of q satisfyingS1 do

LeftRight(wj+1 . . . wm, S2S3 . . . Sk)
}

void DecSpecificity(q,S1, . . . Sk) {
Let v1, v2, . . . vn be the example values used
to infer the structures for the split.
Let xi,1xi,2 . . . xi,k be the user-specified split for eachvi.
As in Section 3.2, compute for all structuresSj

spj = space needed to expressx1,j , . . . xn,j usingSj

Choose the structureSj with the least value ofspj .
for all substringswa . . . wb of q satisfyingSj do

DecSpecificity(w1 . . . wa−1, S1 . . . Sj−1)
DecSpecificity(wb+1 . . . wm, Sj+1 . . . Sp)

}
Figure 11: Two methods of splitting a value.

Some values may still not be unambiguously parseable
using the inferred structures. Other values may be anoma-
lous and not match the inferred structure at all. We flag all
such values as errors to the user, who can apply other trans-
forms to split them, or clean the data further.

4.3.2 Splitting based on inferred structures
Since the structures inferred involve domains with Turing-
completematch functions, splitting a value based on these is
not easy. The first algorithm of Figure 11,LeftRight, is a sim-
ple recursive algorithm for parsing a value that considers the
inferred structures from left to right, and tries to match them
against all prefixes of the unparsed value. This algorithm
is potentially very expensive for “imprecise” structures that
match many prefixes. Quick parsing is particularly needed
when the split is to be applied on a large dataset after the
user has chosen the needed sequence of transforms.

Therefore we use an alternative algorithm calledDec-
Specificity (the second algorithm of Figure 11) that matches
the inferred structures in decreasing order of specificity. It
first tries to find a match for the most specific structure, and
then recursively tries to match the remaining part of the data
value against the other structures. The motivation is that in
the initial stages the most specific structures (typically con-
stant delimiters) will match only a few substrings, and so the
value will be quickly broken down into smaller pieces that
can be parsed later. The specificity of a structure is com-
puted as the sum of the description lengths of the (appropri-



Example Values Split By User Inferred Structure Comments
(| is user specified split position)

Taylor, Jane |, $52,072
Blair, John|, $73,238

Tony Smith|, $1,00,533
(< ξ∗ > < ’,’ Money >)

Parsing is doable despite no good de-
limiter. A regular expressiondomain
can infer a structure of $[0-9,]* for
last component.

MAA |to| SIN
JFK |to| SFO
LAX |–| ORD
SEA |/| OAK

(<len 3 identifier> < ξ∗ >
< len 3 identifier> )

Parsing is possible despite multiple
delimiters.

321 Blake #7 |, Berkeley |, CA 94720
719 MLK Road|, Fremont|, CA 95743

(<number ξ∗ > < ’,’ word>
<’,’ (2 letter word) (5 letter integer)>)

Parsing is easy because of consistent
delimiter.

Figure 10: Parse structures inferred from various split-by-examples

ate substrings) of the example values using the structure. The
less specific structures need to be used only after the value
has been decomposed into much smaller substrings, and the
splitting is not too expensive on these.

To study the effect of parsing according to specificity
we ranDecSpecificity, LeftRight, andIncSpecificity on a few
structures.IncSpecificity is the exact opposite ofDecSpeci-
ficity and considers structures starting with the least specific
one; it illustrates how crucial the choice of starting struc-
ture is. Figure 12 compares the throughput at which one can
split values using these methods. We see thatDecSpecificity
performs much better than the others, with the improvement
being dramatic at splits involving many structures.

4.4 Undoing Transforms and Tracking Data Lineage

The ability to undo incorrect transforms is an important re-
quirement for interactive transformation. However, if the
specified transforms are directly applied on the input data,
many transforms (such as regular-expression-based substi-
tutions and some arithmetic expressions) cannot be undone
unambiguously – there exist no “compensating” transforms.
Undoing these requires “physical undo”,i.e., the system
has to maintain multiple versions of the (potentially large)
dataset.

Instead Potter’s Wheel never changes the actual data
records. It merely collects transforms as the user adds them,
and applies them only on the records displayed on the screen,
in essence showing a view using the transforms specified so
far. Undos are done “logically,” by removing the concerned
transform from the sequence and “redoing” the rest before
repainting the screen.

This approach also solves the ambiguous data lineage
problem of whether a discrepancy is due to an error in the
data or because of a poor transform. If the user wishes to
know the lineage of a particular discrepancy, the system only
needs to apply the transforms one after another, checking for
discrepancies after each transform.

5 Related Work

The commercial data cleaning process is based on ETL tools
and auditing tools, as described in the introduction. [6, 9]
give good descriptions of the process and some popular tools.

There is much literature on transformation languages, es-
pecially for performing higher-order operations on relational

data [1, 7, 16, 18]. Our horizontal transforms are very similar
to the restructuring operators of SchemaSQL [16]. However
our focus is on the ease of specification and incremental ap-
plication, and not merely on expressive power.

The research literature on finding discrepancies in data
has focused on two main things: general-purpose algorithms
for finding outliers in data (e.g.[3]), and algorithms for find-
ing approximate duplicates in data [13, 17, 10]. There has
also been some work on finding hidden dependencies in data
and correspondingly their violations [14]. Such general pur-
pose algorithms are useful as default algorithms for Potter’s
Wheel’s discrepancy detector. However we believe that in
many cases the discrepancies will be domain-specific, and
that data cleaning tools must handle these domains extensi-
bly.

A companion problem to data cleaning is the integration
of schemas from various data sources. We intend to extend
Potter’s Wheel with a system that handles interactive speci-
fication of schema mappings (such as Clio [19]).

Extracting structure from poorly structured data is in-
creasingly important for “wrapping” data from web pages,
and many tools exist in both the research and commercial
world (e.g. [2, 12, 8]). As discussed in Section 4.3, these
tools typically require users to specify regular expressions or
grammars; even these are often not sufficient to unambigu-
ously parse the data, so users have to write custom scripts.
There have also been some learning-based approaches for
automatic text wrapping and segmentation [15, 4]. We be-
lieve, however, that a semi-automatic, interactive approach
using a combination of graphical operations and statistical
methods is more powerful.

There has been some work in the machine learning litera-
ture [20, 5] and the database literature [11] on inferring reg-
ular expressions from a set of values. However as argued be-
fore, for detecting discrepancies it is important to infer struc-
tures in terms of generic user-defined domains, in a way that
is robust to structural data errors.

6 Conclusions and Future Work

Data cleaning and transformation are important tasks in
many contexts such as data warehousing and data integra-
tion. The current approaches to data cleaning are time-
consuming and frustrating due to long-running noninterac-
tive operations, poor coupling between analysis and trans-



Example Values Structure to Split by Split Throughput (usecs/value)
(Int=Integer, Dbl=Double) (DecSpec LeftRight IncSpec)

8:45 <Int> < : > < Int > 5.96 9.18 9.18
1997/10/23 <Int> < / > < Int > < / > < Int > 11.52 17.95 57.89

12.8.15.14 - - [01/May/2000 ... ”GET ... 404 306<Dbl ’.’ Dbl > < ’- - [’ > < ξ∗ > 144.8 539.8 27670

12.8.15.14 - - [01/May/2000 ... ”GET ... 404 306
(<Dbl ’.’ Dbl > < ’- - [’ > < ξ∗ >

< Int ’ ’ Int >)
219.38 943.8 1525590

12.8.15.14 - - [01/May/2000 ... ”GET ... 404 306
(<Dbl ’.’ Dbl > <- - [> <Int/Word/Int>

< ”GET > < ξ∗ > < Int ’ ’ Int > )
233.55 1960.95 1036090

Figure 12: Comparison of split throughputs using three methods.

formation, and complex transformation interfaces that often
require user programming.

We have described Potter’s Wheel, an interactive system
for data transformation and cleaning. By integrating discrep-
ancy detection and transformation, Potter’s Wheel allows
users to gradually build a transformation to clean the data by
adding transforms as discrepancies are detected. Users can
specify transforms through graphical operations or through
examples, and see the effect instantaneously, thereby allow-
ing easy experimentation with different transforms.

We have seen that parsing strings using structures of user-
defined domains results in a general and extensible discrep-
ancy detection mechanism for Potter’s Wheel. Such domains
also provide a powerful basis for specifyingSplit transfor-
mations through example values. In future we would like to
investigate specification of other complex transforms such as
theFormat transform, through examples.

Our focus with Potter’s Wheel has so far been on flat,
tabular data. However, nested data formats like XML are be-
coming increasingly common. While much there are many
research efforts on transformation and query languages for
such data, it would be interesting to investigate graphical and
example-based approaches for specifying these.

While we have so far looked at Potter’s Wheel as a data
cleaning tool, we would like to investigate its effectiveness
as a client interface to a interactive query processing sys-
tem. The transformations applied at the client interface can
be viewed as refinements to the ongoing query, and can be
fed back into the query processor, thereby combining query
specification, execution, and result browsing.
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