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Abstract The area of online machine learning in big data streams covers algorithms
that are (1) distributed and (2) work from data streams with only a limited possibil-
ity to store past data. The first requirement mostly concerns software architectures
and efficient algorithms. The second one also imposes nontrivial theoretical restric-
tions on the modeling methods: In the data stream model, older data is no longer
available to revise earlier suboptimal modeling decisions as the fresh data arrives.
In this article, we provide an overview of distributed software architectures and li-
braries as well as machine learning models for online learning. We highlight the
most important ideas for classification, regression, recommendation, and unsuper-
vised modeling from streaming data, and we show how they are implemented in
various distributed data stream processing systems. This article is a reference ma-
terial and not a survey. We do not attempt to be comprehensive in describing all
existing methods and solutions; rather, we give pointers to the most important re-
sources in the field. All related sub-fields, online algorithms, online learning, and
distributed data processing are hugely dominant in current research and develop-
ment with conceptually new research results and software components emerging at
the time of writing. In this article, we refer to several survey results, both for dis-
tributed data processing and for online machine learning. Compared to past surveys,
our article is different because we discuss recommender systems in extended detail.

1 Introduction

Big data analytics promise to deliver valuable business insights. However, this is
difficult to realize using today’s state-of-the-art technologies, given the flood of data
generated from various sources. A few years ago, the term fast data [146] arose to
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capture the idea that streams of data are generated at very high rates and that these
need to be analyzed quickly in order to arrive at actionable intelligence.

Fast data can flood from network measurements, call records, web page visits,
sensor readings, and so on [29]. The fact that such data arrives continuously in mul-
tiple, rapid, time-varying, possibly unpredictable, and unbounded streams appears
to yield some fundamentally new research problems. Examples of such applications
include financial applications [241], network monitoring [18, 1], security, sensor
networks [66], Twitter analysis [25], and more [83].

Traditional data processing assumes that data is available for multiple access,
even if in some cases it resides on disk and can only be processed in larger chunks.
In this case, we say that the data is at rest, and we can perform batch processing.
Database systems, for example, store large collections of data and allow users to
initiate queries and transactions.

Fast data, or data in motion is closely connected to and in certain cases used
as a synonym of the data stream computational model [172]. In this model, data
arrives continuously in a potentially infinite stream that has to be processed by a
resource-constrained system. The main restriction is that the main memory is small
and can contain only a small portion of the stream, hence most of the data has to be
immediately discarded after processing.

In one of the earliest papers that describe a system for data stream processing [1],
the needs of monitoring applications are described. The tasks relevant for moni-
toring applications differ from conventional processing of data at rest in that the
software system must process and react to continuous input from multiple sources.
The authors introduce the data active, human passive model, in which the system
permanently processes data to provide alerts for humans.

Needs and opportunities for machine learning over fast data streams are stim-
ulated by a rapidly growing number of industrial, transactional, sensor and other
applications [243]. The concept of online machine learning is summarized in one
of the earliest overviews of the field [228]. The principal task is to learn a concept
incrementally by processing labeled training examples one at a time. After each data
instance, we can update the model, after which the instance is discarded.

In the data stream computational model, only a small portion of the data can be
kept available for immediate analysis [110]. This has both algorithmic and statistical
consequences for machine learning: Suboptimal decisions on earlier parts of the
data may be difficult to unwind, and if needed, require low memory sampling and
summarization procedures. For data streaming applications, incremental or online
learning fits best.

Requirement 1: Online learning updates its model after each data instance without access
to all past data, hence the constraints of the data streaming computational model apply.

Data streaming is not just a technical restriction on machine learning: Fast data
is not just about processing power but also about fast semantics. Large databases
available for mining today have been gathered over months or years, and the un-
derlying processes generating them have changed during this time, sometimes rad-
ically [119]. In data analysis tasks, fundamental properties of the data may change
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quickly, which makes gradual manual model adjustment procedures inefficient and
even infeasible [243]. Traditional, batch learners build static models from finite,
static, identically distributed data sets. By contrast, stream learners need to build
models that evolve over time. Processing will strongly depend on the order of ex-
amples generated from a continuous, non-stationary flow of data. Modeling is hence
affected by potential concept drifts or changes in distribution [98].

Requirement 2: Adaptive machine learning models are needed to handle concept drift.

As an additional consequence of Requirement 2, adaptive learning also affects
the way evaluation is performed. Potentially in every unit of time, the system may
return predictions from different models, and we may receive too few predictions
from a particular model to evaluate by traditional metrics. Instead, we have to define
error measures that we can minimize in a feedback system: Predictions are made
for a stream of objects one by one, and the correct answer is received immediately
afterwards. A discrepancy between the prediction and the observed value serves as
feedback, which may immediately trigger modifications to the model [228].

Finally, the third important aspect for online learning from big data is algorith-
mic. In order to cope with the volume of the data, processing has to be distributed.
Clusters of machines are hard to manage, and hardware failure must be mitigated
in the case of an application running on thousands of servers. Map-Reduce [68]
was the first programming abstraction designed to manage the cluster, provide fault
tolerance, and ease software development and debugging. While Map-Reduce is
designed for batch processing, distributed data stream processing needs other so-
lutions, such as communication between processing elements [174] via an inter-
connection topology [219]. For an outlook, mostly batch distributed data mining
solutions are surveyed in [78].

Requirement 3: Online learning from big data has to be implemented in a distributed stream
processing architecture.

Several surveys for online machine learning in general [91, 29, 206, 83, 92] and
subfields [228, 220, 57, 165, 193, 131, 243, 7, 207, 99] have appeared recently. Our
survey is different, first of all, in that we focus on three aspects: the data stream
computational model, the adaptive methods for handling concept drift, and the dis-
tributed software architecture solutions for streaming. We elaborate on systems for
machine learning by distributed data stream processing. In particular, we explore
the idea of using Parameter Servers. We focus on nonstatic environments and give
no convergence theorems for performance on identically distributed streams.

To the best of our knowledge, this is the first survey on online machine learning
with an extensive discussion of recommender systems. Recommenders are impor-
tant as they give a clear, industry-relevant example of Requirement 2. Note that
in [243] it is observed that adaptive learning models are still rarely deployed in
industry.

This paper is organized as follows: In Section 2 we give an overview of dis-
tributed software architectures for online machine learning. Then in Sections 3–6
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we list some of the most important online learning models for supervised classifica-
tion, reinforcement learning, recommendation, unsupervised analysis, and concept
drift mitigation.

2 Processing Data Streams for Machine Learning

Data-intensive applications often work in the data stream computational model [17],
in which the data is transient: Some or all of the input data is not available for ran-
dom access from disk or memory. The data elements in the stream arrive online
and can be read at most once; in case of a failure, it is possible that the data ele-
ments cannot be read at all. The system has no control over the order in which data
elements arrive to be processed either within a data stream or across data streams.

The strongest constraint for processing data streams is the fact that once an ele-
ment from a data stream has been processed, it has to be discarded or archived. Only
selected past data elements can be accessed by storing them in memory, which is
typically small relative to the size of the data streams. Many of the usual data pro-
cessing operations would need random access to the data [17]: For example, only
a subset of SQL queries can be served from the data stream. As surveyed in [172],
data stream algorithms can tackle this constraint by a variety of strategies, including
adaptive sampling in sliding windows, selecting representative distinct elements,
and summarizing data in low-memory data structures, also known as sketches or
synopses.

When designing online machine learning algorithms, we have to take several
algorithmic and statistical considerations into account. The first problem we face is
the restrictions of the computational model. As we cannot store all the input, we
cannot unwind a decision made on past data. For example, we can use statistical
tests to choose from competing hypotheses [73], which give theoretical guarantees
in the case of identically distributed data.

A second problem with real stream learning tasks is that data typically changes
over time, for example, due to concept drifts [228]. For changing distributions, we
can even use the streaming computational model to our advantage: By permanent
training, we can adapt to concept drift by overwriting model parameters based on
insights from fresh data and thus forgetting the old distribution [89]. Possible means
of concept drift adaptation, however, will depend on the task, the data, and the choice
of the algorithm [228, 137].

In this section we give a brief overview of how different, mostly open source,
software projects manage machine learning tasks over streaming data. We note that
very active, ongoing research in the field may make parts of our description obsolete
very quickly. First, in Section 2.1 we provide a summary of the most important
distributed data stream processing engines with active development at the time of
writing. Next, in Section 2.2 we give a taxonomy of the possible machine learning
solutions with respect to support from streaming data and distributed processing.
Since operation on shared-nothing distributed architectures is a key requirement for
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big data processing solutions, we discuss the main machine learning parallelization
strategies in Section 2.3. One particularly popular solution, the parameter server is
also described in more detail. Finally, in Section 2.4 we list functionalities of stream
learning libraries as of the time of writing.

2.1 Data Stream Processing Engines

Distributed stream learning libraries are usually either part of data stream pro-
cessing engines (DSPEs) or built on top of them through interfaces. For a better
understanding of the software architecture, we give an overview of DSPEs next.

Since the emergence of early systems such as Aurora [1, 15], several DSPEs
have been developed. For a survey of DSPEs, see [194]. The main focus of the most
recent, evolving DSPEs is to provide simplicity, scalability, stateful processing, and
fault tolerance with fast recovery. In terms of simplicity, the most important goal is
to overcome the need to integrate the DSPE with a batch processing engine as in the
so-called lambda architecture described, among other places, in [167, 133].

In this section we focus on Apache Spark [236] and Apache Flink [43], since
at the time of writing these DSPEs have the most active development for learning
from streams. Other systems usually provide machine learning functionalities by in-
terfacing with SparkML, a Spark-based machine learning library, or SAMOA [170],
a stream learning library designed to work as a layer on top of general DSPEs. We
list the functionality of these systems in Section 2.4.

Without attempting to be exhaustive, we list some other main DSPEs. Note
that this field is very active and several systems with large impact on both DSPEs
and stream learning have already stopped development. For example, several active
projects have borrowed concepts from the S4 project [174], which retired in 2014.
Proprietary systems are summarized in [103]; it appears to be the case that commer-
cial developers as of yet have no special focus on data stream processing, hence our
main goal is to give an overview of the open source solutions.

Storm [219] relies on the concept of the connection topology of the processing
elements. The topology is allowed to contain cycles; however in case of a failure
with cycles, neither the exactly-once nor the at-least-once processing condition can
be enforced. Samza [175] provides a design for fast recovery after failures indepen-
dent of the state size. As a new advantage, stateful streaming systems have the pos-
sibility to emulate batch operation, hence the need for the lambda architecture can
be eliminated. Beam [12], based on the Google Cloud dataflow model [46, 11, 12],
focuses on event time windows to process out-of-order data. Beam can be connected
to the deep learning framework Tensorflow [67] for batch machine learning. Finally,
while most of the above systems are distributed, we mention Esper [22] as a promi-
nent single machine, in-memory DSPE.

One DSPE in the focus of this article, Spark [236] treats stream processing as
a sequence of small batch computations. Records in the stream are collected into
micro-batches (by time), and a short-lived batch job is scheduled to process each
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micro-batch. The advantage of this approach is its intuitive transition from batch to
streaming with straightforward fault tolerance and interaction with batch programs.
The main disadvantage is higher latency due to the inherent scheduling overhead for
the micro-batch.

Another DSPE of our choice, Flink [43] provides consistent managed state with
exactly-once guarantees, while achieving high throughput and low latency, serv-
ing both batch and streaming tasks. Flink handles the streams event by event in a
true streaming fashion through the underlying streaming (dataflow) runtime model.
While this provides more fine-grained access to the stream, it does not come with a
throughput overhead due to various runtime optimizations such as buffering of out-
put records. The advantages are very low processing latency and a natural stateful
computational model. The disadvantages are that fault tolerance and load balancing
are more challenging to implement. Flink is primarily for stream processing. Flink
batch tasks can be expressed by using loops in stream processing, as we will see in
the next section.

2.2 Taxonomy of Machine Learning Tools

Fig. 1 Taxonomy of machine
learning tools.

In this article, we survey online machine learning tools for big data. Our main
focus are models, architectures, and software libraries that process streaming data
over distributed, shared-nothing architectures. As shown in Fig. 1, the two key dis-
tinguishing features of machine learning tools are whether they are distributed and
whether they are based on static or streaming data.
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As the least restrictive of the four quadrants in Fig. 1, batch non-distributed
tools can implement any method from the other quadrants. If scale permits, data
streams can first be stored and then analyzed at rest, and distributed processing steps
can be unfolded to run sequentially on a single-processor system. Traditional ma-
chine learning tools, for example, R, Weka, and scikit-learn, fall into this quadrant.

Distributed batch machine learning systems [78] typically implement algo-
rithms by using the Map-Reduce principle [68]. Perhaps the best-known system is
Mahout [180] built on top of Hadoop [227], but a very rich variety of solutions ex-
ists in this field. GraphLab [164], withdrawn from the market in 2016, was another
mostly batch tool that has also influenced online systems.

Online learning solutions cover algorithms that immediately build models after
seeing a relatively small portion of the data. By this requirement, we face the diffi-
culty of not necessarily being able to undo a suboptimal decision made in an earlier
stage, based on data that is no longer available for the algorithm.

The first library for online machine learning, MOA [27] collects a variety of
models suitable for training online, most of which we describe in Sections 3
and 6.1. Based on MOA concepts, SAMOA [170] is a distributed framework—a
special purpose DSPE—and library that provides distributed implementation for
most MOA algorithms. Online learning recommender systems, both distributed and
non-distributed, are also described in [185]. Another recent non-distributed online
learning tool is described in [31].

For a distributed online learning software architecture, the underlying system
needs to be a DSPE. In addition to SAMOA, which can be considered a DSPE itself,
most DSPEs of the previous section can be used for distributed online learning. For
example, Flink, Samza, and Storm implement interfaces to use SAMOA libraries.
On the other hand, a DSPE can also implement batch machine learning algorithms:
For example, the machine learning library SparkML is mostly batch and FlinkML
is partly batch.

Combined batch and online machine learning solutions are of high practical rel-
evance. We can train our models batch based on a precompiled sample, and then
apply prediction for a live data stream. DSPE solutions are progressing in this area.
One recent result, Clipper is a low-latency online prediction system [63] with a
model abstraction layer that makes it easy to serve pre-trained models based on a
large variety of machine learning frameworks.

Another batch approach to learning from time-changing data is to repeatedly
apply a traditional learner to a sliding window of examples: As new examples arrive,
they are inserted into the beginning of the window. Next, a corresponding number
of examples are removed from the end of the window, and the learner is reapplied,
as in early research on concept drift in learning from continuous data [228, 119].
Finally, as a combination with online learning methods, the batch trained model can
be incrementally updated by a streaming algorithm [89].
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2.3 Parallel Learning and the Parameter Server

In order to design distributed modeling algorithms, we have to elaborate on paral-
lelization strategies. Horizontal or data parallel systems partition the training data
and build separate models on subsets that may eventually get merged. Such a solu-
tion is applied, for example, for training XGBoost trees [53]. This approach, how-
ever, will typically depend on the partitioning and lead to heuristic or approximate
solutions.

Vertical parallel or model parallel training solutions partition across attributes
in the same data point, rather than partitioning the training data coming from the
stream. Each training point is split into its constituting attributes, and each attribute
is sent to a different processing element. For example, for linear models trained by
gradient descent, coefficients can be stored and updated by accessing a distributed
store [157]. As another example, the fitness of attributes for a split in a decision
tree construction can be computed in parallel [170]. Further examples such as Ten-
sorflow [67], Petuum [230], and MXNet [54] are also capable of model parallel
training. The drawback is that in order to achieve good performance, there must be
sufficient inherent parallelism in the modeling approach.

Fig. 2 The parameter server
architecture for distributed
machine learning.

The parameter server introduced in [209] is a popular way to implement model
parallel training, with several variants developed [115, 159, 157, 158], including an
application for deep learning [67]. The main idea is to simplify the development
of distributed machine learning applications by allowing access to shared param-
eters as key–value pairs. As shown in Fig. 2, the compute elements are split into
two subsets: Parameters are distributed across a group of server nodes, while data
processing and computation are performed at worker nodes. Any node can both
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push out its local parameters and pull parameters from remote nodes. Parallel tasks
are typically asynchronous, but the algorithm designer can be flexible in choosing a
consistency model.

Various parameter server systems are summarized best in [157]. The first gener-
ation [209] uses distributed key-value stores such as memcached [81] to store the
parameters. More recent solutions [67, 159] implement specific parameter access
interfaces. For example, as the first step towards a general platform, [115] design a
table-based interface for stale synchronous operation, which they use to implement
a wide variety of applications.

Most results [209, 115, 157] describe parameter servers for variants of regression
as well as unsupervised modeling by Latent Dirichlet Allocation (see Section 6.1).
Another popular use is classification by deep neural networks [67, 159]. An imple-
mentation for Multiple Additive Regression Trees is given in [240].

Recommendation algorithms can also be implemented by the parameter server
principle. Batch implementations of asynchronous distributed stochastic gradient
descent recommender algorithms are given in [115, 203]. A recent comparison
of distributed recommenders, including an online one based on a Flink parameter
server, is given in [185].

The parameter server idea fits the data stream as well as the batch computational
models. For example, if it suffices to read the data only once and in input order for
gradient descent, a batch parameter server such as in [157] immediately yields a
streaming algorithm. Yet, most applications are for batch modeling only [209, 115,
157, 203, 240]. As examples of parameter servers for online learning, applications
for reinforcement learning can be found in [173] and for recommenders in [185].

2.4 Stream Learning Libraries

We provide an overview of the present machine learning functionalities of the main
open source engines. Note that all these engines are under active development with
a very large number of components already available as research prototypes or pull
requests. For this reason, we only want to give a representative overview of the main
components.

2.4.1 MOA and SAMOA

SAMOA [170], a distributed online learning library, is based on the concepts of
MOA [27], a single machine library. SAMOA provides model parallel implementa-
tions of specific algorithms by using the concepts of Storm [219]: Processing ele-
ments are connected in a loop-free topology, which connects the various pieces of
user code. SAMOA can run on top of a DSPE with a flexible interface connection.
SAMOA connectors are implemented for all active DSPEs in Section 2.1.
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For classification, SAMOA [65, 170] provides the Vertical Hoeffding Tree (VHT),
a distributed version of a streaming decision tree [73] (Section 3.3). For clustering,
it includes an algorithm based on CluStream [9] (Section 6.1). The library also in-
cludes meta-algorithms such as bagging and boosting (Section 3.4).

2.4.2 Apache Spark

Spark has a very rich set of batch machine learning functionalities, including linear,
tree, Support Vector Machine, and neural network models for classification and re-
gression, ensemble methods as well as explicit and implicit alternating least squares
for recommender systems, and many more listed at https://spark.apache.org/mllib/.
However, the only streaming algorithm in Spark MLLib is a linear model with ongo-
ing work regarding online recommender and Latent Dirichlet Allocation prototypes.
Spark has no SAMOA connector yet.

Spark has several parameter server implementations, most of which are batch
only. We mention two projects with recent activity. Glint is a parameter server
based Latent Dirichlet Allocation (Section 6.1) implementation, which is described
in [123]. Angel is a general parameter server [126] that has implementations for
logistic regression, SVM (Section 3.2), matrix factorization (Section 5.3), Latent
Dirichlet Allocation, and more. Angel supports synchronous, asynchronous, and
stale synchronous processing [125].

2.4.3 Apache Flink

Flink has a loosely integrated set of machine learning components, most of which
are collected at https://github.com/FlinkML. In addition to the SAMOA connector
at https://github.com/apache/incubator-samoa/tree/master/samoa-flink, Flink has a
true streaming parameter server implementation at https://github.com/FlinkML/flink-
parameter-server, which includes a Passive Aggressive classifier (Section 3.2) and
gradient descent matrix factorization (Section 5.3). Finally, Flink can serve online
predictions by models trained on any system supporting the PMML standard [102],
using the JPMML library at https://github.com/FlinkML/flink-jpmml.

In Flink, the parameter server is implemented as part of the data stream API
at https://github.com/FlinkML/flink-parameter-server. Since the communication be-
tween workers and servers is two-way, the implementation involves loops in stream
processing. As mentioned in Section 2.1, exactly-once processing and fault toler-
ance is conceptually difficult, and implementation is not yet complete as of the time
of writing [42].
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3 Classification and Regression

The goal of classification and regression is to predict the unknown label of a data
instance based on its attributes or variables. The label is discrete for classification,
and continuous for regression. Classification and regression in batch settings are
well established, with several textbooks available in data mining [187] and machine
learning [87].

For classification and regression over streaming data, the first two of the require-
ments in the Introduction play a key role. By the first requirement, data is transient,
since it does not fit in main memory, hence algorithms that iterate over the entire
data multiple times are ruled out. By the second requirement, we cannot assume that
the examples are independent, identically distributed, and generated from a station-
ary distribution, hence different predictions by different models have to be applied
and evaluated at different times. Special modeling tools are required to meet the
two challenges, and known evaluation and comparison methods are not convenient
yet [97].

An important, and perhaps the oldest, application of online learning is single
trial EEG classification, in which the system learns from the online feedback of the
experimental subjects [176]. These early experiments differ from the approach in
this section in that the performance was only measured at the end of the experiments,
and no systematic analysis of the classifier performance in time was conducted.

This section is organized as follows: First, we describe the difficulties and pos-
sibilities of evaluating online learning methods in Section 3.1. We cover the most
important online classification and regression methods in the next subsections. We
discuss the main linear models in Section 3.2, tree-based methods in Section 3.3,
classifier ensembles in Section 3.4, Bayes models in Section 3.5, and finally, neural
networks in Section 3.6. Other methods such as nearest neighbor [149] are known
as well. Our list of online classification methods is not comprehensive; for an ex-
tended list, see the recent survey [91].

3.1 Evaluation

In an infinite data stream, data available for training and testing is potentially in-
finite. Hence holdout methods for selecting an independent test set seem viable at
first glance, and are used in a large number of online machine learning research re-
sults. However, for online evaluation, we have no control over the order in which the
data is processed, and the order is not independent of the data distribution. Since the
distribution generating examples and the decision models evolve over time, cross-
validation and other sampling strategies are not applicable [97].

Most studies of online learning determine overall loss as a sum of losses experi-
enced by individual training examples. Based on this so-called predictive sequential,
abbreviated as prequential method [64], we define online training and evaluation
in the following steps:
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1. Based on the next unlabeled instance in the stream, we cast a prediction.
2. As soon as the true label of this instance becomes available, we assess the pre-

diction error.
3. We update the model with the most recently observed error calculated by com-

paring the predicted and the true labels before proceeding with the next item of
the data stream.

Prequential error is known to be a pessimistic estimator, since it may be strongly
influenced by the initial part of the sequence, when only a few examples have been
processed, and the model quality is low. The effect of the beginning of the stream
can be mitigated, for example, by forgetting mechanisms [97, 98].

A further issue in online evaluation is that in reality, labels may arrive with de-
lay [243]. The majority of adaptive learning algorithms require true labels to be
available immediately after casting the prediction. If true labels are delayed, we
have to join two streams with time delay, one for the variables and one for the
labels, which can make the implementation of the prequential evaluation scheme
computationally challenging.

Error metrics that can be defined for individual data points can be applied for
prequential evaluation. For example, the definition of mean squared error, a popular
metric for regression is

MSE =
1
N

N

∑
i=1

(ŷi− yi)
2, (1)

where yi is the actual and ŷi is the predicted class label for data point i, and N is
the current size of the data stream. Accuracy and error rate can be computed by a
similar averaging formula.

For certain common metrics such as precision, recall, and true and false positive
rates, the definition will involve the changing size of the set of positive, negative,
or all instances, which makes the metrics difficult to interpret in a very long stream
of inhomogeneous data. Although one definition of ROC AUC [82] is based on true
and false positive rates, its online interpretation is described in [238].

3.2 Linear Models

Linear models in online machine learning date back to the perceptron algorithm [200].
The perceptron learning algorithm learns label y of d-dimensional input vector x
as a linear combination of the coordinates,

ŷ = w ·x. (2)

The prediction mechanism is based on an n-dimensional hyperplane of direction w,
which divides the instance space into two half-spaces. The margin of an example,
y ·w ·x, is a signed value proportional to the distance between the instance and the
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hyperplane. If the margin is positive, the instance is correctly classified; otherwise,
it is incorrectly classified.

The perceptron can be trained by gradient descent for hinge loss as target func-
tion. If labels y take the values±1 and prediction ŷ is defined by equation (2), hinge
loss is equal to

`(w;(x,y)) =
{

0 if y · ŷ≥ 1;
1− y · ŷ otherwise, (3)

from which the gradient can be computed as follows: If prediction ŷ has the correct
sign, and its absolute value is at least 1, that is, hinge loss is 0, then there is no
change; the algorithm is passive. Otherwise, the gradient for w is −x · ŷ, and the
update rule for learning rate η is

w← w+η ·x · ŷ if y · ŷ < 1. (4)

The online gradient descent algorithm simply applies the above step to training
examples in order [147]. By contrast, the batch gradient descent algorithm reads
the input multiple times and usually repeatedly optimizes coefficients for the same
instance. Batch gradient descent can be emulated by an online algorithm: We go
through training examples one by one in an online fashion and repeat multiple times
over the training data [45].

Based on the general idea of perceptron learning, several online linear models
have been proposed; for a detailed overview, see [83]. The Passive Aggressive (PA)
classifier [60] is a popular online linear model that works well in practice, for ex-
ample, applied as the Gmail spam filter [2]. The main goal of the PA algorithm is
to improve the convergence properties of the perceptron algorithm, the simplest nu-
merical optimization procedure. Several improved online optimization procedures
were proposed prior to PA: Kivinen and Warmuth [135] give an overview of numer-
ous earlier additive and multiplicative online algorithms, all of which are solvable
by gradient descent [160, 100, 62, 134]. Based on the experiments in [62, 60], the
Passive Aggressive algorithm outperforms most of the earlier online linear classifi-
cation methods. Perceptron learning and most of its successors apply both to clas-
sification and regression; in other words, the range of the actual label y can be both
binary and continuous.

The PA algorithm solves a constrained optimization problem: We would like
the new classifier to remain as close as possible to the current one while achieving
at least a unit margin on the most recent example. We use the Euclidean distance
of the classifiers, ||w−w′||2. PA optimizes for hinge loss, with the goal to keep
the distance minimal and the value of the margin at least 1, that is, to solve the
optimization problem

w← argminw′ ||w−w′||2 s.t. `(w;(x,y)) = 0. (5)

The algorithm is passive if loss is 0, and otherwise aggressive, since it enforces zero
loss. As shown in [60], the solution of the optimization problem yields the update
rule
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w← w+ `(w;(x,y)) · y ·x/||x||2. (6)

In [60], variants of PA are described that introduce a slack variable ξ ≥ 0 in equa-
tion (5) such that the margin must stay below ξ . Adding constant times ξ or ξ 2 to
the minimization target in equation (5) leads to similar optimization problems. In
the same paper, multi-class, cost-sensitive, and regression variants are described as
well.

Although the class of linear predictors may seem restrictive, the pioneering work
of Vapnik [222] and colleagues demonstrates that by using kernels one can employ
highly nonlinear predictors as well. The Support Vector Machine (SVM) learns
an optimal separating hyperplane w∗ in a certain high-dimensional mapped space
defined by the mapping ϕ(x) over training vectors x. Like with perceptron learn-
ing, the prediction has the form ŷ = w∗ ·ϕ(x); however, w∗ may be of very high
dimensionality.

Potential problems of the very high dimensional mapped space are eliminated by
the kernel trick. In the optimization procedure, w∗ turns out to be the combination
of the so-called support vectors, the subset SV of training instances xi for i∈ SV that
maximize the margin. We can obtain the parameters

w∗ = ∑
i∈SV

αiyiϕ(xi), (7)

where yi are the labels and αi can be found by maximizing the margin. By equa-
tion (7), we can reduce the prediction to computing inner products in the mapped
space:

w∗ ·ϕ(x) = ∑
i∈SV

αiyiϕ(xi) ·ϕ(x), (8)

The main goal of online SVM is to maintain a set of support vectors and corre-
sponding multipliers within the limits of available memory. Whenever an online
SVM learner decides to add new support vectors, others need to be discarded first,
and αi need to be updated.

To decide which support vector to discard, the definition of the span and the S-
span of the support vectors defined by Vapnik [221] can be used. The span of a
support vector is the minimum distance of the vector from a certain set defined by
all others. The S-span of a set of support vectors is the maximum span among them.

An online SVM method to update the set of support vectors from the data stream
is proposed in [6], namely, maintaining a set of support vectors and multipliers that
fit into the memory limit. For a misclassified new instance, the algorithm measures
the S-span of all possible ways of replacing one old support vector with the new in-
stance, and selects the best one. Multipliers are updated by the incremental learning
procedure of [44].

Several other, similar online SVM optimization methods are known, for exam-
ple [62, 61, 33, 34]. Online learning algorithms were also suggested as fast alterna-
tives to SVM in [85], based on the online algorithm for calculating the maximum
margin linear model of [86]. Online gradient descent optimizers for linear models
often work with kernels as well [134].
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3.3 Decision and Regression Trees

In a decision or regression tree, each internal node corresponds to a test on an at-
tribute, while leaves contain predictors for classification or regression. To build a
tree, decision tree induction algorithms iterate through each attribute and compute
an information theoretic function such as entropy or Gini index for classification
and variance for regression [187].

Online tree induction algorithms face the difficulty that the recursive tree con-
struction steps cannot read past data. After a split decision is made, batch algorithms
partition all data into child nodes and compute the required information theoretic
function of the attributes separately in each child node. Online algorithms cannot
partition past data; instead, they take advantage of the potentially infinite data and
use fresh instances only in the newly created nodes.

Another problem with online tree construction is that a split decision has to be
made at a certain point in time, without seeing future data. A popular solution is
to use the Hoeffding criterion for a statistical guarantee that the selected split is
optimal for future data as well. In the so-called Hoeffding Tree or Very Fast Decision
Tree (VFDT) [73], attribute information theoretic functions are maintained over the
stream. If the Hoeffding criterion is met, a split decision is made, and the attribute
statistics over the new child nodes are computed based on the new data from the
stream. Similar methods for regression trees are described in [13, 120]. For online
vertical parallel distributed Hoeffding Trees, see [141].

One problem in decision tree construction on streaming data is the cost of main-
taining attribute statistics for many-valued attributes. For such attributes, a low gran-
ularity histogram has to be maintained. In [127], a method is described that parti-
tions the range of a numerical attribute into intervals and uses statistical tests to
prune these intervals.

Another difficulty is caused by nonstationary data, since each new child node
is processed based on a new portion of data from the stream. Decision trees over
evolving streams are considered in [26, 24, 31]. We give an overview of general
methods for nonstationary data in Section 6.2.

3.4 Ensemble Methods

Ensemble methods build multiple, potentially different models on potentially differ-
ent subsets of instances and attributes [187]. The simplest example is bagging where
several base models are trained based on samples with replacement. Sampling with
replacement can be simulated online [181, 28]. A special ensemble technique, the
online random forest algorithm is described in [70].

A highly successful ensemble technique is boosting, in which we generate a se-
quence of base models by incorporating the prediction error of the previous models
when constructing the next. For example, in AdaBoost, an algorithm designed for
online learning in its first description [84], the next classifier is trained by weight-
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ing instances based on the function of the error of previous classifiers. In gradient
boosting [53], the next model is trained on the residual, that is, the difference of the
training label and the continuous predicted label of the previous classifiers.

For online boosting, the difference compared to batch boosting is that the per-
formance of a base model cannot be observed on the entire training set, only on the
examples seen earlier. Like with online decision tree induction, decisions need to
be taken based only on part of the training data. Various online boosting algorithms
are described in [181, 52, 23], based on the ideas of parallel boosting via approx-
imation [79, 182, 150]. For gradient boosted trees [53], a recent, most successful
classification method, the online version is described in [223].

3.5 Bayes Models

Bayesian networks were one of the earliest applications for online learning [88],
with the first methods mostly using mini-batch updates [38]. Bayesian learning
methods maintain conditional probability tables P(x|y) by counting, where x is a
feature vector and y is its label. Considering the conditional probability tables and
the class distribution as priors, the predicted class of an instance will be the one that
maximizes the posterior probability computed by the Bayes rule [187].

The simplest, Naive Bayes model makes the “naive” assumption that each in-
put variable is conditionally independent given the class label [75]. While this
model works surprisingly well [74], a weaker assumption is needed in Bayesian net-
works [189], in which we represent each variable with a node in a directed acyclic
graph. Rather than assuming independence naively, we assume that each variable is
conditionally independent given its parents in the graph.

For online learning, it is easy to update the conditional probabilities both for
Naive Bayes and for Bayesian networks [88], provided that they fit into internal
memory. Methods for updating the network structure online are described, for ex-
ample, in [88, 51].

3.6 Neural Networks

Neural networks and deep learning have shown great promise in many practical ap-
plications ranging from speech recognition [114] and visual object recognition [144]
to text processing [59]. One of the earliest applications of online trained neural net-
works is EEG classification [108].

Gradient descent is perhaps the most commonly used optimization procedure
for training neural networks [151], which naturally leads to online learning algo-
rithms [129] as well. The traditional formulation of gradient descent is impractical
for very large neural networks. A scalable online distributed version, Downpour
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SGD [67], uses asynchronous parameter updates in conjunction with a parameter
server (Section 2.3).

4 Reinforcement Learning

Reinforcement learning is an area of machine learning concerned with agents taking
actions in an environment with the aim of maximizing some cumulative reward. It is
different from supervised learning in that the environment does not provide a target
behavior, only rewards depending on the actions taken.

The environment is typically assumed to be a Markov Decision Process (MDP).
Formally, we assume a set of states, S, a set of actions, A, a transition probability
function P(s,a,s′) denoting the probability of reaching state s′ after taking action a
in state s, and a reward function R(s,a) denoting the immediate reward after taking
action a in state s.

While there is a wide range of reinforcement learning algorithms (see, e.g.,
[214]), we focus here on algorithms that fit the streaming model and (possibly) deal
with nonstationary environments. The streaming model of reinforcement learning is
constrained not only by a continuous flow of input data, but also by a continuous
requisite to take actions.

4.1 Algorithms for Stationary Environments

Most reinforcement learning algorithms estimate the value of feasible actions and
build a policy based on that value (e.g., by choosing the actions with the highest es-
timates with some additional exploration). An alternative to value prediction meth-
ods are policy gradient methods that update a parameterized policy depending on
the performance.

4.1.1 Value Prediction

The value of a state is the expected cumulative reward starting from a given state
and following a particular policy. In a similar way, the action value is the expected
reward starting from a given state with a particular action.

Value prediction methods estimate the value of the state or the value of the actions
in particular states. In the former case, to build a policy from the estimated values,
an additional transition model is needed as well. Such a model is provided for some
domains (e.g., by the rules of a game), but in many cases the transition model needs
to be learned as well. Action-values can be used directly for constructing a policy
without the need for a model.
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Temporal-difference (TD) learning learns the state value estimate V (s) by the
following update rule after each state transition (St ,St+1):

V (St)← (1−α)V (St)+α(Rt + γV (St+1)),

where α is a step-size, and γ is the discount factor. TD learning was used in one
of the first breakthroughs for reinforcement learning, that is Tesauro’s backgammon
program [218].

The best-known action-value prediction algorithm is Q-learning [226]. For each
occurrence of a transition (St ,At ,St+1), the algorithm updates the action-value
Q(St ,At) by

Q(St ,At)← (1−α)Q(St ,At)+α(Rt + γ max
a

Q(St+1,a)).

Q-learning using deep neural network to approximate the action-values has been
successfully applied to playing some Atari games at human expert level [169].

Another algorithm that learns action-values is Sarsa [213]. For each sequence
St ,At ,St+1,At+1, the algorithm updates its estimates by

Q(St ,At)← (1−α)Q(St ,At)+α(Rt + γQ(St+1,At+1)).

Sarsa was successfully used by [121] for optimizing a DRAM memory controller.
The value prediction algorithms above were described with update rules for a

tabular representation. In most cases, function approximation is used, and the update
rules rely on a gradient step. Online enhancements of gradient descent as well as
eligibility traces [214] can be applied to all variants.

4.1.2 Policy Gradient

While using value functions is more widespread, it is also possible to use a param-
eterized policy without relying on such functions. Parameterized policies are typi-
cally optimized by gradient ascent with respect to the performance of the policy.

A policy gradient algorithm, the REINFORCE algorithm [229] was used to opti-
mize policy in a Go playing program that outperforms the best human players [208].

4.2 Algorithms for Nonstationary Environments

Most reinforcement learning algorithms, including those discussed in the previous
section, assume that the environment does not change over time. While incremen-
tal algorithms such as Q-learning can adapt well to nonstationary environments, it
may be necessary to devise more explicit exploration strategies that can cope with
changes, for example, in reward distribution.
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A special case of reinforcement learning is the multi-armed bandit problem. In
this case, the agent repeatedly selects an action from K possible choices, obtain-
ing a reward after each choice. This problem retains the notion of reward; however,
there are no states and consequently no state-transitions. In the non-stochastic vari-
ant [16], the distribution of the rewards may change over time arbitrarily. Standard
algorithms for this problem are Exp3 and its variants [16], which rely on an expo-
nential selection algorithm, including some exploration terms as well. Contextual
bandits extend the bandit setting with the notion of state (or context); however, state
transitions are still missing. This framework was used for instance in [156] to select
personalized new stories. We note that the distinguishing feature of recommendation
in a bandit setting is that the user can provide feedback only on the recommended
items.

5 Recommender Systems

Recommender systems [198] serve to predict user preferences regarding items such
as music tracks (Spotify), movies (Netflix), products, books (Amazon), blogs, or
microblogs (Twitter), as well as content on friends’ and personal news feeds (Face-
book).

Recommender systems can be categorized by the type of information they infer
about users and items. Collaborative filtering [161, 202] builds models of past user-
item interactions such as clicks, views, purchases, or ratings, while content-based
filtering [163] recommends items that are similar in content, for example, share
phrases in their text description. Context-aware recommenders [5] use additional
information on the user and the interaction, for example user location and weather
conditions. Recent events in a user session [138] serve as a special context.

A milestone in the research of recommendation algorithms, the Netflix Prize
Competition [21] had high impact on research directions. The target of the con-
test was based on the one to five star ratings given by users, with one part of the data
used for model training and the other for evaluation. As an impact of the competi-
tion, tasks now termed batch rating prediction were dominating research results.

Recommendation models rely on the feedback provided by the user, which can
be explicit, such as one to five star movie ratings on Netflix [4]. However, most rec-
ommendation tasks are implicit, as the user provides no like or dislike information.
Implicit feedback can be available in the form of time elapsed viewing an item or
listening to a song, or in many cases, solely as a click or some other form of user
interaction. In [190], the authors claim that 99% of recommendation industry tasks
are implicit.

As a main difference between recommendation and classification, classifiers usu-
ally work independently of the event whose outcome they predict. Recommender
systems, on the other hand, may directly influence observations: They present a
ranked top list of items [71], and the user can only provide feedback for the items
on the list. Moreover, real systems process data streams where users request one or a
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few items at a time and get exposed to new information that may change their needs
and taste when they return to the service next time. Furthermore, an online trained
model may change and return completely different lists for the same user even for
interactions very close in time.

By the above considerations, real recommender applications fall in the category
of top item recommendation by online learning for implicit user feedback, a task
that has received less attention in research so far. In this section, we show the main
differences in evaluating such systems compared to both classifiers and batch sys-
tems, as well as describe the main data stream recommender algorithms.

Online recommenders seem more restricted than those that can iterate over the
data set several times, and one could expect inferior quality from the online meth-
ods. By contrast, in [184, 89], surprisingly strong performance of online methods is
measured.

As an early time-aware recommender system example, the item-based nearest
neighbor [202] can be extended with time-decay [72]. Most of the early models,
however, are time-consuming to compute, difficult to update from a data stream,
and hence need periodical batch training. Probably the first result in this area, the
idea of processing transactions in chronological order to incrementally train a rec-
ommendation model first appeared in [216, Section 3.5]. Streaming gradient descent
matrix factorization methods were also proposed in [122, 14], who use Netflix and
Movielens data and evaluate by RMSE.

The difficulty of evaluating streaming recommenders was first mentioned in
[148], although the authors evaluated models by offline training and testing split.
Ideas for online evaluation metrics appeared first in [183, 224, 184]. In [224], incre-
mental algorithms are evaluated using recall. In [184], recall is shown to have un-
desirable properties, and other metrics for evaluating online learning recommenders
are proposed.

Finally, we note that batch distributed recommender systems were surveyed
in [130].

5.1 Prequential (Online) Evaluation for Recommenders

To train and evaluate a time-sensitive or online learning recommender, we can use
the prequential or online evaluation framework that we defined for classifier evalu-
ation. As seen in Fig. 3, online evaluation for a recommender system includes the
following steps:

1. We query the recommender for a top-k recommendation for the active user.
2. We evaluate the list in question against the single relevant item that the user

interacted with.
3. We allow the recommender to train on the revealed user-item interaction.

Since we can potentially re-train the model after every new event, the recommen-
dation for the same user may be very different even at close points in time, as seen
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Fig. 3 Prequential evaluation of the online ranking prediction problem.

in Fig. 3. The standard recommender evaluation settings used in research cannot be
applied, since there is always only a single relevant item in the ground truth.

In one of the possible recommender evaluation settings, the rating prediction
problem, which is popular in research, we consider a user u and an item i. The
actual user preference in connection with the item is expressed as a value rui, for
which the system returns a prediction r̂ui. This explicit rating can be a scale such
as one to five stars for a Netflix movie, while implicit rating can be the duration of
viewing a Web page in seconds. Implicit rating is binary when the only information
is whether the user interacted with the item (clicked, viewed, purchased) or not.
Depending on whether rui is binary or scale, the same prequential metrics, such as
error rate or MSE, can be applied as for classification or regression. For example,
in the Netflix Prize competition, the target was the square root of MSE between the
predicted and actual ratings, see Equation (1).

Another possible way to evaluate recommenders is ranking prediction, where
performance metrics depend on the list of displayed items. We note that given rat-
ing prediction values r̂ui for all i, in theory, ranking prediction can be solved by
sorting the relevance score of all items. For certain models, heuristics to speed up
the selection of the highest values of r̂ui by candidate preselection exist [217].

To evaluate ranking prediction, we have to take into consideration two issues that
do not exist for classifier evaluation. In the case of prequential evaluation, as shown
in Fig. 3, the list for user u may change potentially after every interaction with u. As
soon as u provides feedback for certain item i, we can change model parameters and
the set of displayed items may change completely. Most of the batch ranking quality
measures focus on the set of items consumed by the same user, under the assumption
that the user is exposed to the same list of items throughout the evaluation. As this
assumption does not hold, we need measures for individual user-item interactions.

Another issue regarding ranking prediction evaluation lies in a potential user-
system interaction that affects quality scores. Typically, the set of items is very large,
and users are only exposed to a relatively small subset, which is usually provided
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by the system. The form of user feedback is usually a click on one or more of
these items, which can be evaluated by computing the clickthrough rate. Since users
cannot give feedback on items outside the list, the fair comparison of two algorithms
that present different sets for the user can only be possible by relying on live user
interaction. This fact is known by practitioners, who use A/B testing to compare the
performance of different systems. In A/B testing, the live set of users is divided into
groups that are exposed to the results of the different systems.

Most traditional ranking prediction metrics, to a certain level, rely on the assump-
tion that the same user is exposed to the same list of items, and hence the interactions
of the same user can be considered to be the unit for evaluation. For online evalu-
ation, as noted in [184], the unit of evaluation will be a single interaction, which
usually contains a single relevant item. Based on this modification, most batch met-
rics apply in online learning evaluation as well. Note that the metrics below apply
not just in A/B testing, but also in experiments with frozen data, where user feed-
back is not necessarily available for the items returned by a given algorithm. For
example, if the item consumed by the user in the frozen data is not returned by the
algorithm, the observed relevance will be 0, which may not be the case if the same
algorithm is applied in an A/B test. Note that attempts to evaluate research results by
A/B testing have been made in the information retrieval community [20]; however,
designing and implementing such experiments is cumbersome.

Next, we list several metrics for the quality of the ordered top-K list of items L =
{i1, i2, ..., iK} against the items E consumed by the user. We will also explain how
online evaluation metrics differ from their batch counterparts. For the discussion,
we mostly follow [184].

Clickthrough rate is commonly used in the practice of recommender evaluation.
It is defined as the ratio of clicks received for L:

Clickthrough@K =
{1 if E ∩L 6= /0;

0 otherwise.
(9)

For precision and recall, similar to Clickthrough, the actual order within L is unim-
portant:

Precision@K =
|E ∩L|

K
, Recall@K =

|E ∩L|
|E|

. (10)

For batch evaluation, E is the entire set of items with positive feedback from a
given user who is exposed to the same L for each interaction. The overall batch
system performance can be evaluated by averaging precision and recall over the set
of users. For online evaluation, typically |E| = 1, where Precision@K is 0 or 1/K
and Recall@K is 0 or 1 depending on whether the actual item in E is listed in L or
not. Precision and recall are hence identical to clickthrough, up to a constant. As
a consequence, the properties of online precision and recall are very different from
their batch counterparts. The main reason for the difference lies in the averaging
procedure of prequential evaluation: We cannot merge the events of the same user,
instead, we average over the set of individual interactions.

Measures that consider the position of the relevant item i in L can give more
refined performance indication. The first example is reciprocal rank:
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RR@K =

{
0 if rank(i)> K;

1
rank(i) otherwise. (11)

Discounted cumulative gain (DCG) is defined similarly, as

DCG@K =
K

∑
k=1

rel(ik)
log2(1+ k)

(12)

where rel(ik) indicates the relevance of the i-th item in the list. For the implicit task,
relevance is 1 if the user interacted with the item in the evaluation set, 0 otherwise.
For batch evaluation, we can consider all interactions of the same user as one unit.
If we define iDCG@K, the ideal maximum possible value of DCG@K for the given
user, we can obtain nDCG@K, the normalized version of DCG@K, as

nDCG@K =
DCG@K
iDCG@K

. (13)

Note that for online learning, there is only one relevant item, hence iDCG = 1. For
emphasis, we usually use the name nDCG for batch and DCG for online evaluation.

5.2 Session-Based Recommendation

Previous items in user sessions constitute a very important context [113]. In e-
commerce, the same user may return next time with a completely different intent and
may want to see a product category completely different from the previous session.
Algorithms that rely on recent interactions of the same user are called session-based
item-to-item recommenders. The user session is special context, and it is the only
information available for an item-to-item recommender. In fact, several practition-
ers [138, 190] argue that most of the recommendation tasks they face are without
sufficient past user history. For example, users are often reluctant to create logins
and prefer to browse anonymously. Moreover, they purchase certain types of goods
(for example, expensive electronics) so rarely that their previous purchases will be
insufficient to create a meaningful user profile. Whenever a long history of previ-
ous activities or purchases by the user is not available, recommenders may propose
items that are similar to the most recent ones viewed in the actual user session.

Session-based recommendation can be served by very simple algorithms, most
of which are inherently online. A comparison of the most important such online
algorithms in terms of performance is available in [89]. Data stream processing
algorithms can retain items from the most recently started sessions as long as they
fit in their memory. Recommendation is based on the recent items viewed by the user
in the actual shopping session. For example, we can record how often users visited
item i after visiting another item j. Since fast update to transition frequencies is
usually possible, the method is online.
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In an even simpler algorithm that is not strictly session-based, we recommend the
most popular recent items. This method can be considered batch or online depending
on the granularity of the item frequency measurement update. Both algorithms can
be personalized if we consider the frequency of past events involving the user. If
items are arranged hierarchically (for example, music tracks by artist and genre),
personal popularity and personal session data can involve the frequency of the artists
or genres for recommending tracks. More session-based algorithms are described
in [138].

5.3 Online Matrix Factorization

Fig. 4 Utility matrix R and
the matrix factorization model
built from matrices P and Q.
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Most nontrivial online recommender algorithms are based on matrix factoriza-
tion [140], a popular class of collaborative filtering methods. Given the user-item
utility matrix R shown in Fig. 4, we model R by decomposing it into the two dense
matrices P and Q. For a given user u, the corresponding row in P is user vector pu.
Similarly, for item i, the corresponding column of Q is item vector qi. The predicted
relevance of item i for user u is then

r̂ui = puqT
i . (14)

Note that we can extend the above model by scalar terms that describe the biased
behavior of the users and the items [140].

One possibility to train model parameter matrices P and Q is by gradient de-
scent [140, 90], which can be applied to online learning as well [184]. For a set of



Online Machine Learning in Big Data Streams 25

interactions E, we optimize equation (1) for MSE as target function. In one step of
gradient descent, we fit P and Q in equation (14) to one of the ratings in E. Unlike
in batch training, where we can use the ratings several times in any order, in online
learning, we have the most recent single item in E. In other words, in online gradient
descent, we fit the model to the events one by one as they arrive in the data stream.

For a given (explicit or implicit) rating rui, the steps of gradient descent are as
follows. First, we compute the gradient of objective function F with respect to the
model parameters:

∂F
∂ pu

=−2(rui− r̂ui)qi,
∂F
∂qi

=−2(rui− r̂ui)pu. (15)

Next, we update the model parameters in opposite direction of the gradient, propor-
tionally to learning rate η , as

pu ← η(rui− r̂ui)qi,

qi ← η(rui− r̂ui)pu.

Overfitting is usually avoided by adding a regularization term in the objective func-
tion [140].

In the case of implicit feedback, the known part of the utility matrix only contains
elements with positive feedback. To fit a model, one requires negative feedback for
training as well. Usually, such elements are selected by sampling from those that the
user has not interacted with before [195]. We can also introduce confidence values
for ratings and consider lower confidence for the artificial negative events [118].

Gradient descent can also be used in a mix of batch and online learning, for ex-
ample, training batch models from scratch periodically, and continuing the training
with online learning. We can also treat users and items differently, for example, up-
dating user vectors more dynamically than item vectors, as first suggested by [216].

Another use of online gradient descent is to combine different recommendation
models [184]. We can express the final prediction as the linear combination of the
models in the ensemble whose parameters are the linear coefficients and the individ-
ual model parameters. In [184], two online gradient descent methods are described
with regards to whether the derivative of the individual models is available, where
all parameters can be trained through the derivative of the final model or otherwise
by learning the coefficients and the individual models separately.

5.4 Variants of Matrix Factorization

Several variants of matrix factorization that can be trained by gradient descent both
for batch and online learning tasks have been proposed. Bayesian Personalized
Ranking [196] has top list quality as target instead of MSE. In asymmetric ma-
trix factorization [188], we model the user by the sum of the item vectors the user
rated in the past.
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Recently, various factorization models have been developed that incorporate con-
text information [113]. Context data can be modeled by introducing data tensor D
instead of the rating matrix R. In a simplest case, the data includes a single piece of
additional context information [197]: for example, music tracks can have artist as
context.

Alternating Least Squares [140, 191] (ALS) is another optimization method for
matrix factorization models, in which for a fixed Q, we compute the optimal P,
then for a fixed P, the optimal Q, repeatedly until certain stopping criteria are met.
Hidasi et al. [112, 111, 113] introduced several variants of ALS-based optimization
schemes to incorporate context information. By incremental updating, ALS can also
be used for online learning [109].

5.5 Summary of Recommendation by Online Learning

Recommendation differs from classification in that in recommendation, there are
two types of objects, users, and items, and a prediction has to be made for their in-
teraction. A practical recommender system displays a ranked list of a few items for
which the user can give feedback. In an online learning system, the list shown to the
same user at different times may change completely for two reasons. First, as in the
prequential classifier training and evaluation setting, the list of recommendations
may change because the model changes. Second, the user feedback we use for eval-
uation depends on the actual state of the model, since the user may have no means
to express interest in an item not displayed. Hence for online learning evaluation,
metrics that involve the notion of a volatile list have to be used.

Online learning is very powerful for recommender systems due to their advantage
of having much more emphasis on recent events. For example, if we update models
immediately for newly emerged users and items, trends are immediately detected.
The power of online learning for recommendation may also be the result of updating
user models with emphasis on recent events, which may be part of the current user
session. User session is a highly relevant context for recommendation and most
session-based methods are inherently online.

6 Additional Topics

In this final section, we give a brief overview of two additional topics, both of which
are extensively covered in recent surveys. In Section 6.1, we describe unsupervised
data mining methods, including clustering, frequent itemset mining, dimensionality
reduction, and topic modeling. In Section 6.2, we describe the notion of the dataset
drift, or in other terms, concept drift, and list the most important drift adapting meth-
ods. We only discuss representative results in these areas.
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6.1 Unsupervised Data Mining

The most prominent class of unsupervised learning methods is clustering where in-
stances have to be distributed into a finite set of clusters such that instances within
the cluster are more similar to each other than to others in different clusters [187].
Batch clustering algorithms have been both studied and employed as data analy-
sis tools for decades [124, 231]. One frequently applied clustering method is k-
means [107] where cluster center selection and assignment to nearest centers are
iteratively performed until convergence. Another is DBSCAN [77], a density-based
method that groups points that are closely packed together.

Online clustering algorithms are surveyed among other places in [165, 131, 7,
207]. The majority of the most relevant methods are data stream versions of k-means
or its variants such as k-medians [237, 35, 80, 177, 104, 9, 239, 96, 143, 3]. Another
set of results describes the data stream implementation of DBSCAN [41, 55, 143].
Finally, an online hierarchical clustering algorithm that maintains similarity mea-
sures and hierarchically merges closest clusters is described in [199].

Finding frequent itemsets [10] is another central unsupervised data mining task,
both static and streaming. In brief, for a table of transactions and items, the task is
to find all subsets of items that occur together in transactions with at least a pre-
scribed frequency. Several variants of the task are described in [8]. Online frequent
itemset mining algorithms are surveyed in [57]. Algorithms based on counts of all
past data in the stream [48, 101, 155, 234, 152] are also called landmark window
based approaches. In some of these algorithms, time adaptivity is achieved by plac-
ing more importance on recent items [48, 101, 152]. Sliding window based ap-
proaches [47, 58, 49, 210, 56, 154, 232, 39] are particularly suitable for processing
data with concept drift. For a comparative overview, see, for example, how MOA’s
algorithm was selected [192]. Note that a special subtask, finding frequent items in
data streams, is already challenging and requires approximate data structures [50].

Principal component analysis (PCA) is a powerful tool for dimensionality re-
duction [128] based on matrix factorization. Online variants are based on ideas to
incrementally update the matrix decomposition [37, 106, 36]. The first PCA algo-
rithms suitable for online learning are based on neural networks [178, 201, 179].
Similar to the linear models in Section 3.2, PCA can also apply the kernel trick to
involve nonlinear modeling [205]. Iterative kernel PCA is described in [132, 105]
and online kernel PCA in [117]. We note that for nearest neighbor search in the low-
dimensional space provided by PCA, the heuristics for selecting large inner products
is applicable [217].

Probabilistic topic modeling fits complex hierarchical Bayesian models to large
document collections. A topic model reveals latent semantic structure that can be
used for many applications. While PCA-like models can also be used for latent se-
mantic analysis [69], recently the so-called Latent Dirichlet Allocation (LDA) [32]
has gained popularity. Most topic model parameters can only be inferred based on
Markov Chain Monte Carlo sampling, a method difficult to implement for online
learning. LDA inference is possible based on either online Gibbs sampling [211, 40]
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or online stochastic optimization with a natural gradient step [116]. Several online
LDA variants are described in [209, 115, 157, 235, 233, 123].

6.2 Concept Drift and Adaptive Learning

In dynamically changing and nonstationary environments, we often observe con-
cept drift as the result of data distribution change over time. The phenomenon and
mitigation of concept (or dataset) drift for online learning are surveyed in several
articles [228, 220, 193, 243, 99]. The area of transfer learning where the (batch)
training and the test sets are different [186], is closely related to concept drift [212],
but more difficult in the sense that adaptation by learning part of the new data is not
possible.

Adaptive learning refers to the technique of updating predictive models online
to react to concept drifts. One of the earliest active learning systems is STAG-
GER [204]. In [242], the main steps of online adaptive learning are summarized as
(1) making assumptions about future distribution, (2) identifying change patterns,
(3) designing mechanisms to make the learner adaptive, and (4) parameterizing the
model at every time step.

A comprehensive categorization of concept drift adaptation techniques is found
in [99]. Online learning algorithms can naturally adapt to evolving distributions.
However, adaptation happens only as the old concepts are diluted due to the new
incoming data, which is more suitable for gradual changes [162, 73]. For sudden
changes, algorithms that maintain a sliding window of the last seen instances per-
form better [228, 93, 145]. Another option is to include explicit forgetting mecha-
nisms [142, 136, 76]. The most important distinction is whether changes are explic-
itly or implicitly detected: Trigger-based methods aim at detecting when concept
drift occurs to build a new model from scratch [93]. Evolving learners, by contrast,
do not aim to detect changes but rather maintain the most accurate models at each
time step. Evolving learners are method-specific, most of them based on ensemble
methods [225, 139].

A few papers [168, 171] give overviews of different types of environmental
changes and concept drifts based on speed, recurrence, and severity. Drift can hap-
pen gradually or suddenly, in isolation, in tendencies or seasonally, predictably or
unpredictably, and its effect on classifier performance may or may not be severe.
In [204, 93], several artificial data sets with different drift concepts, sudden or
abrupt, and gradual changes are described.

A large variety of single classifier and ensemble models capable of handling
concept drift are described in [220]. Perhaps the majority of the results con-
sider tree-based methods [13]. For example, concept drift adaptive online decision
trees based on a statistical change detector that works on sliding windows are de-
scribed in [26, 24]. More examples include Bayesian models [94, 19], neural net-
works [95, 153], and SVM [215, 137]. Concept drift adaptation methods exist for
clustering [199, 207]. Sliding window based data stream frequent itemset mining
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is also adaptive [192]. Some of the results do not follow the data stream computa-
tional model but rather use computational resources with little restriction. One class
of such methods are incremental algorithms with partial memory [166]. We also
note that there is a MOA-based software system for concept drift detection [30].
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3. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.:
Streamkm++: A clustering algorithm for data streams. Journal of Experimental Algorith-
mics (JEA) 17, 2–4 (2012)

4. Adhikari, V.K., Guo, Y., Hao, F., Varvello, M., Hilt, V., Steiner, M., Zhang, Z.L.: Unreel-
ing netflix: Understanding and improving multi-cdn movie delivery. In: INFOCOM, 2012
Proceedings IEEE, pp. 1620–1628. IEEE (2012)

5. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender
systems handbook, pp. 217–253. Springer (2011)

6. Agarwal, S., Saradhi, V.V., Karnick, H.: Kernel-based online machine learning and support
vector reduction. Neurocomputing 71(7), 1230–1237 (2008)

7. Aggarwal, C.C.: A survey of stream clustering algorithms. Data Clustering: Algorithms and
Applications p. 231 (2013)

8. Aggarwal, C.C., Han, J.: Frequent pattern mining. Springer (2014)
9. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data

streams. In: Proceedings of the 29th international conference on Very large data bases-
Volume 29, pp. 81–92. VLDB Endowment (2003)

10. Agrawal, R., Imielienski, T., Swami, A.: Mining association rules between sets of items in
large databases. In: P. Bunemann, S. Jajodia (eds.) Proceedings of the 1993 ACM SIGMOD
Conference on Managment of Data, pp. 207–216. ACM Press, New York (1993)
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Barral, D.: Online machine learning. Efficiency and Scalability Methods for Computational
Intellect 27 (2013)

84. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an
application to boosting. In: European conference on computational learning theory, pp. 23–
37. Springer (1995)

85. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algorithm. Ma-
chine learning 37(3), 277–296 (1999)

86. Frie, T.T., Cristianini, N., Campbell, C.: The kernel-adatron algorithm: a fast and simple
learning procedure for support vector machines. In: Machine Learning: Proceedings of the
Fifteenth International Conference (ICML’98), pp. 188–196 (1998)

87. Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning, vol. 1. Springer
series in statistics New York (2001)

88. Friedman, N., Goldszmidt, M.: Sequential update of bayesian network structure. In: Pro-
ceedings of the Thirteenth conference on Uncertainty in artificial intelligence, pp. 165–174.
Morgan Kaufmann Publishers Inc. (1997)
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185. Pálovics, R., Kelen, D., Benczúr, A.A.: Tutorial on open source online learning recom-
menders. In: Proceedings of the Eleventh ACM Conference on Recommender Systems,
pp. 400–401. ACM (2017)

186. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on knowledge and data
engineering 22(10), 1345–1359 (2010)

187. Pang-Ning, T., Steinbach, M., Kumar, V., et al.: Introduction to data mining. WP Co (2006)
188. Paterek, A.: Improving regularized singular value decomposition for collaborative filtering.

In: Proc. KDD Cup Workshop at SIGKDD’07, 13th ACM Int. Conf. on Knowledge Discovery
and Data Mining, pp. 39–42 (2007)

189. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor-
gan Kaufmann (2014)
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