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Abstract

Example-based explanations are widely used in the effort to improve the inter-
pretability of highly complex distributions. However, prototypes alone are rarely
sufficient to represent the gist of the complexity. In order for users to construct
better mental models and understand complex data distributions, we also need
criticism to explain what are not captured by prototypes. Motivated by the Bayesian
model criticism framework, we develop MMD-critic which efficiently learns pro-
totypes and criticism, designed to aid human interpretability. A human subject pilot
study shows that the MMD-critic selects prototypes and criticism that are useful
to facilitate human understanding and reasoning. We also evaluate the prototypes
selected by MMD-critic via a nearest prototype classifier, showing competitive
performance compared to baselines.

1 Introduction and Related Work

As machine learning (ML) methods have become ubiquitous in human decision making, their
transparency and interpretability have grown in importance (Varshney, 2016). Interpretability is
particularity important in domains where decisions can have significant consequences. For example,
the pneumonia risk prediction case study in Caruana et al. (2015) showed that a more interpretable
model could reveal important but surprising patterns in the data that complex models overlooked.

Studies of human reasoning have shown that the use of examples (prototypes) is fundamental to the
development of effective strategies for tactical decision-making (Newell and Simon, 1972; Cohen
et al., 1996). Example-based explanations are widely used in the effort to improve interpretability.
A popular research program along these lines is case-based reasoning (CBR) (Aamodt and Plaza,
1994), which has been successfully applied to real-world problems (Bichindaritz and Marling, 2006).
More recently, the Bayesian framework has been combined with CBR-based approaches in the
unsupervised-learning setting, leading to improvements in user interpretability (Kim et al., 2014). In
a supervised learning setting, example-based classifiers have been is shown to achieve comparable
performance to non-interpretable methods, while offering a condensed view of a dataset (Bien and
Tibshirani, 2011).

However, examples are not enough. Relying only on examples to explain the models’ behavior
can lead over-generalization and misunderstanding. Examples alone may be sufficient when the
distribution of data points are ‘clean’ – in the sense that there exists a set of prototypical examples
which sufficiently represent the data. However, this is rarely the case in real world data. For instance,
fitting models to complex datasets often requires the use of regularization. While the regularization
adds bias to the model to improve generalization performance, this same bias may conflict with the
distribution of the data. Thus, to maintain interpretability, it is important, along with prototypical
examples, to deliver insights signifying the parts of the input space where prototypical examples
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do not provide good explanations. We call the data points that do not quite fit the model criticism
samples. Together with prototypes, criticism can help humans build a better mental model of the
complex data space.

Bayesian model criticism (BMC) is a framework for evaluating fitted Bayesian models, and was
developed to to aid model development and selection by helping to identify where and how a particular
model may fail to explain the data. It has quickly developed into an important part of model design,
and Bayesian statisticians now view model criticism as an important component in the cycle of
model construction, inference and criticism (Gelman et al., 2014). Lloyd and Ghahramani (2015)
recently proposed an exploratory approach for statistical model criticism using the maximum mean
discrepancy (MMD) two sample test, and explored the use of the witness function to identify the
portions of the input space the model most misrepresents the data. Instead of using the MMD to
compare two models as in classic two sample testing (Gretton et al., 2008), or to compare the model
to input data as in the Bayesian model criticism of Lloyd and Ghahramani (2015), we consider a novel
application of the MMD, and its associated witness function as a principled approach for selecting
prototype and criticism samples.

We present the MMD-critic, a scalable framework for prototype and criticism selection to improve
the interpretability of machine learning methods. To our best knowledge, ours is the first work which
leverages the BMC framework to generate explanations for machine learning methods. MMD-critic
uses the MMD statistic as a measure of similarity between points and potential prototypes, and
efficiently selects prototypes that maximize the statistic. In addition to prototypes, MMD-critic
selects criticism samples i.e. samples that are not well-explained by the prototypes using a regularized
witness function score. The scalability follows from our analysis, where we show that under certain
conditions, the MMD for prototype selection is a supermodular set function. Our supermodularity
proof is general and may be of independent interest. While we are primarily concerned with prototype
selection and criticism, we quantitatively evaluate the performance of MMD-critic as a nearest
prototype classifier, and show that it achieves comparable performance to existing methods. We also
present results from a human subject pilot study which shows that including the criticism together
with prototypes is helpful for an end-task that requires the data-distributions to be well-explained.

2 Preliminaries

This section includes notation and a few important definitions. Vectors are denoted by lower case
x and matrices by capital X. The Euclidean inner product between matrices A and B is given by
〈A,B〉 =

∑
ai,jbi,j . Let det(X) denote the determinant of X. Sets are denoted by sans serif e.g.

S. The reals are denoted by R. [n] denotes the set of integers {1, . . . , n}, and 2V denotes the power
set of V. The indicator function 1[a] takes the value of 1 if its argument a is true and is 0 otherwise.
We denote probability distributions by either P or Q. The notation | · | will denote cardinality when
applied to sets, or absolute value when applied to real values.

2.1 Maximum Mean Discrepancy (MMD)

The maximum mean discrepancy (MMD) is a measure of the difference between distributions P
and Q, given by the suprenum over a function space F of differences between the expectations with
respect to two distributions. The MMD is given by:

MMD(F , P,Q) = sup
f∈F

(
EX∼P [f(X)]− EY∼Q [f(Y )]

)
. (1)

When F is a reproducing kernel Hilbert space (RKHS) with kernel function k : X × X 7→ R, the
suprenum is achieved at (Gretton et al., 2008):

f(x) = EX′∼P [k(x,X ′)]− EX′∼Q [k(x,X ′)] . (2)

The function (2) is also known as the witness function as it measures the maximum discrepancy
between the two expectations inF . Observe that the witness function is positive wheneverQ underfits
the density of P , and negative wherever Q overfits P . We can substitute (2) into (1) and square the
result, leading to:

MMD2(F , P,Q) = EX,X′∼P [k(X,X ′)]− 2EX∼P,y∼Q [k(X,Y )] + EY,Y ′∼Q [k(Y, Y ′)] . (3)
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It is clear that MMD2(F , P,Q) ≥ 0 and MMD2(F , P,Q) = 0 iff. P is indistinguishable from
Q on the RHKS F . This population definition can be approximated using sample expectations.
In particular, given n samples from P as X = {xi ∼ P, i ∈ [n]}, and m samples from Q as
Z = {zi ∼ Q, i ∈ [m]}, the following is a finite sample approximation:

MMD2
b(F ,X,Z) =

1

n2

∑
i,j∈[n]

k(xi, xj)−
2

nm

∑
i∈[n],j∈[m]

k(xi, zj) +
1

m2

∑
i,j∈[m]

k(zi, zj), (4)

and the witness function is approximated as:

f(x) =
1

n

∑
i∈[n]

k(x, xi)−
1

m

∑
j∈[m]

k(x, zj). (5)

3 MMD-critic for Prototype Selection and Criticism

Given n samples from a statistical model X = {xi, i ∈ [n]}, let S ⊆ [n] represent a subset of the
indices, so that XS = {xi ∀i ∈ S}. Given a RKHS with the kernel function k(·, ·), we can measure the
maximum mean discrepancy between the samples and any selected subset using MMD2(F , X,XS).
MMD-critic selects prototype indices S which minimize MMD2(F , X,XS). For our purposes, it
will be convenient to pose the problem as a normalized discrete maximization. To this end, consider
the following cost function, given by the negation of MMD2(F , X,XS) with an additive bias:

Jb(S) =
1

n2

n∑
i,j=1

k(xi, xj)−MMD2(F , X,XS)

=
2

n|S|
∑

i∈[n],j∈S

k(xi, yj)−
1

|S|2
∑
i,j∈S

k(yi, xj). (6)

Note that the additive bias MMD2(F , X, ∅) = 1
n2

∑n
i,j=1 k(xi, xj) is a constant with respect to S.

Further, Jb(S) is normalized, since, when evaluated on the empty set, we have that:

Jb(∅) = min
S∈2[n]

Jb(S) =
1

n2

n∑
i,j=1

k(xi, xj)−
1

n2

n∑
i,j=1

k(xi, xj) = 0.

MMD-critic selects m∗ prototypes as the subset of indices S ⊆ [n] which optimize:

max
S∈2[n],|S|≤m∗

Jb(S). (7)

For the purposes of optimizing the cost function (6), it will prove useful to exploit it’s linearity with
respect to the kernel entries. The following Lemma is easily shown by enumeration.

Lemma 1. Let Jb(·) be defined as in (6), then Jb(·) is a linear function of k(xi, xj). In particular,
define K ∈ Rn×n, with ki,j = k(xi, xj), and A(S) ∈ Rn×n with entries ai,j(S) = 2

n|S|1[j∈S] −
1
|S|2 1[i∈S]1[j∈S] then: Jb(S) = 〈A(S),K〉.

3.1 Submodularity and Efficient Prototype Selection

While the discrete optimization problem (6) may be quite complicated to optimize, we show that the
cost function Jb(S) is monotone submodular under conditions on the kernel matrix which are often
satisfied in practice, and which can be easily checked given a kernel matrix. Based on this result, we
describe the greedy forward selection algorithm for efficient prototype selection.

Let F : 2[n] 7→ R represent a set function. F is normalized if F (∅) = 0. F is monotonic, if for all
subsets u ⊂ v ⊆ 2[n] it holds that F (U) ≤ F (V). F is submodular, if for all subsets U,V ∈ 2[n] it
holds that F (U∪V)+F (U∩V) ≤ F (U)+F (V). Submodular functions have a diminishing returns
property (Nemhauser et al., 1978) i.e. the marginal gain of adding elements decreases with the size
of the set. When F is submodular, −F is supermodular (and vice versa).
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We prove submodularity for a larger class of problems, then show submodularity of (6) as a special
case. Our proof for the larger class may be of independent interest. In particular, the following
Theorem considers general discrete optimization problems which are linear matrix functionals, and
shows sufficient conditions on the matrix for the problem to be monotone and/or submodular.
Theorem 2 (Monotone Submodularity for Linear Forms). Let H ∈ Rn×n (not necessarily symmetric)
be element-wise non-negative and bounded, with upper bound h∗ = maxi,j∈[n] hi,j > 0. Further,
construct the binary matrix representation of the indices that achieve the maximum as E ∈ [0, 1]n×n

with ei,j = 1 if hi,j = h∗ and ei,j = 0 otherwise, and its complement E′ = 1 − E with the
corresponding set E′ = {(i, j) s.t. ei,j = 0}. Given the ground set S ⊆ 2[n] consider the linear form:
F (H,S) = 〈A(S),H〉 ∀ S ∈ S. Given m = |S|, define the functions:

α(n,m) =
a(S ∪ {u})− a(S)

b(S)
, β(n,m) =

a(S ∪ {u}) + a(S ∪ v})− a(S ∪ {u, v})− a(S)
b(S ∪ {u, v}) + d(S)

,

(8)
where a(S) = F (E,S), b(S) = F (E′,S) for all u, v ∈ S (additional notation suppressed in α(·)
and β(·) for clarity). Let m∗ = maxS∈S |S| be the maximal cardinality of any element in the ground
set.

1. If hi,j ≤ h∗α(n,m) ∀ 0 ≤ m ≤ m∗, ∀ (i, j) ∈ E′, then F (H,S) is monotone

2. If hi,j ≤ h∗β(n,m) ∀ 0 ≤ m ≤ m∗, ∀ (i, j) ∈ E′, then F (H,S) is submodular.

Finally, we consider a special case of Theorem 2 for the MMD.
Corollary 3 (Monotone Submodularity for MMD). Let the kernel matrix K ∈ Rn×n be element-wise
non-negative, with equal diagonal terms ki,i = k∗ > 0 ∀i ∈ [n], and be diagonally dominant. If the
off-diagonal terms ki,j ∀ i, j ∈ [n], i 6= j satisfy 0 ≤ ki,j ≤ k∗

n3+2n2−2n−3 , then Jb(S) given by (6)
is monotone submodular.

The diagonal dominance condition expressed by Corollary 3 is easy to check given a kernel matrix.
We also note that the conditions can be significantly weakened if one determines the required number
of prototypes m∗ = max |S| ≤ n a-priori. This is further simplified for the MMD since the bounds
(8) are both monotonically decreasing functions of m, so the condition need only be checked for
m∗. Observe that diagonal dominance is not a necessary condition, as the more general approach in
Theorem 2 allows arbitrarily indexed maximal entries in the kernel. Diagonal dominance is assumed
to simplify the resulting expressions.

Perhaps, more important to practice is our observation that the diagonal dominance condition
expressed by Corollary 3 is satisfied by parametrized kernels with appropriately selected parameters.
We provide an example for radial basis function (RBF) kernels and powers of positive standardized
kernels. Further examples and more general conditions are left for future work.
Example 4 (Radial basis function Kernel). Consider the radial basis function kernel K with entries
ki,j = k(xi, xj) = exp(−γ‖xi − xj‖) evaluated on a sample X with non-duplicate points i.e.
xi 6= xj ∀ xi, xj ∈ X. The off-diagonal kernel entries ki,j i 6= j monotonically decrease with respect
to increasing γ. Thus, ∃ γ∗ such that Corollary 3 is satisfied for γ ≥ γ∗.
Example 5 (Powers of Positive Standardized Kernels). Consider a element-wise positive kernel
matrix G standardized to be element-wise bounded 0 ≤ gi,j < 1 with unitary diagonal gi,i =
1 ∀ i ∈ [n]. Define the kernel power K with ki,j = gpi,j . The off-diagonal kernel entries ki,j i 6= j
monotonically decrease with respect to increasing p. Thus, ∃ p∗ such that Corollary 3 is satisfied for
p ≥ p∗.

Beyond the examples outlined here, similar conditions can be enumerated for a wide range of
parametrized kernel functions, and are easily checked for model-based kernels e.g. the Fisher kernel
(Jaakkola et al., 1999) – useful for comparing data points based on similarity with respect to a
probabilistic model. Our interpretation of from these examples is that the conditions of Corollary 3
are not excessively restrictive. While constrained maximization of submodular functions is generally
NP-hard, the simple greedy forward selection heuristic has been shown to perform almost as well as
the optimal in practice, and is known to have strong theoretical guarantees.
Theorem 6 (Nemhauser et al. (1978)). In the case of any normalized, monotonic submodular function
F , the set S∗ obtained by the greedy algorithm achieves at least a constant fraction

(
1− 1

e

)
of the

objective value obtained by the optimal solution i.e. F (S∗) =
(
1− 1

e

)
max
|S|≤m

F (s).
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In addition, no polynomial time algorithm can provide a better approximation guarantee unless P
= NP (Feige, 1998). An additional benefit of the greedy approach is that it does not require the
decision of the number of prototypes m∗ to be made at training time, so assuming the kernel satisfies
appropriate conditions, training can be stopped at any m∗ based on computational constraints, while
still returning meaningful results. The greedy algorithm is outlined in Algorithm 1.

Algorithm 1 Greedy algorithm, maxF (S) s.t. |S| ≤ m∗
Input: m∗,S = ∅
while |S| < m∗ do

foreach i ∈ [n]\S, fi = F (S ∪ i)− F (S)
S = S ∪ {argmax fi}

end while
Return: S.

3.2 Model Criticism

In addition to selecting prototype samples, MMD-critic characterizes the data points not well
explained by the prototypes – which we call the model criticism. These data points are selected as
the largest values of the witness function (5) i.e. where the similarity between the dataset and the
prototypes deviate the most. Consider the cost function:

L(C) =
∑
l∈C

∣∣∣∣∣∣ 1n
∑
i∈[n]

k(xi, xl)−
1

m

∑
j∈S

k(xj , xl)

∣∣∣∣∣∣ . (9)

The absolute value ensures that we measure both positive deviations f(x) > 0 where the prototypes
underfit the density of the samples, and negative deviations f(x) < 0, where the prototypes overfit
the density of the samples. Thus, we focus primarily on the magnitude of deviation, rather than its
sign. The following theorem shows that (9) is a linear function of C.
Theorem 7. The criticism function L(C) is a linear function of C.

We found that the addition of a regularizer which encourages a diverse selection of criticism points
improved performance. Let r : 2[n] 7→ R represent a regularization function. We select the criticism
points as the maximizers of this cost function:

max
C⊆[n]\S,|C|≤c∗

L(C) + r(K,C) (10)

Where [n]\S denote all indexes which not include the prototypes, and c∗ is the number of criticism
points desired. Fortunately, due to the linearity of (5), the optimization function (10) is submodular
when the regularization function is submodular. We encourage the use of regularizers which incor-
porate diversity into the criticism selection. We found the best qualitative performance using the
log-determinant regularizer (Krause et al., 2008). Let KC,C be the sub-matrix of K corresponding to
the pair of indexes in C× C, then the log-determinant regularizer is given by:

r(K,C) = log detKC,C (11)

which is known to be submodular. Further, several researchers have found, both in theory and practice
(Sharma et al., 2015), that greedy optimization is an effective strategy for optimization. We apply the
greedy algorithm for criticism selection with the function F (C) = L(C) + r(K,C).

4 Related Work

There is a large literature on techniques for selecting prototypes that summarize a dataset, and a full
literature survey is beyond the scope of this manuscript. Instead, we overview a few of the most
relevant references. The K-medoid clustering (Kaufman and Rousseeuw, 1987) is a classic technique
for selecting a representative subset of data points, and can be solved using various iterative algorithms.
K-medoid clustering is quite similar to K-means clustering, with the additional condition that the
presented prototypes must be in the dataset. The ubiquity of large datasets has led to resurgence
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of interest in the data summarization problem, also known as the set cover problem. Progress has
included novel cost functions and algorithms for several domains including image summarization
(Simon et al., 2007) and document summarizauion (Lin and Bilmes, 2011). Recent innovations also
include highly scalable and distributed algorithms (Badanidiyuru et al., 2014; Mirzasoleiman et al.,
2015). There is also a large literature on variations of the set cover problem tuned for classification,
such as the cover digraph approach of (Priebe et al., 2003) and prototype selection for interpretable
classification (Bien and Tibshirani, 2011), which involves selecting prototypes that maximize the
coverage within the class, but minimize the coverage across classes.

Submodular / Supermodular functions are well studied in the combinatorial optimization litera-
ture, with several scalable algorithms that come with optimization theoretic optimality guaran-
tees (Nemhauser et al., 1978). In the Bayesian modeling literature, submodular optimization has
previously been applied for approximate inference by Koyejo et al. (2014). The technical conditions
required for submodularity of (6) are due to averaging of the kernel similarity scores – as the average
requires a division by the cardinality |S|. In particular, the analogue of (6) which replaces all the aver-
ages by sums (i.e. removes all division by |S|) is equivalent to the well known submodular functions
previously used for scene (Simon et al., 2007) and document (Lin and Bilmes, 2011) summarization,
given by: − 2

n

∑
i∈[n],j∈S k(xi, yj) + λ

∑
i,j∈S k(yi, xj), where λ > 0 is a regularization parameter.

The function that results is known to be submodular when the kernel is element-wise positive i.e.
without the need for additional diagonal dominance conditions. On the other hand, the averaging
has a desirable built-in balancing effect. When using the sum, practitioners must tune the additional
regularization parameter λ to achieve a similar balance.

5 Results

We present results for the proposed technique MMD-critic using USPS hand written digits (Hull,
1994) and Imagenet (Deng et al., 2009) datasets. We quantitatively evaluate the prototypes in terms
of predictive quality as compared to related baselines on USPS hand written digits dataset. We also
present preliminary results from a human subject pilot study. Our results suggest that the model
criticism – which is unique to the proposed MMD-critic is especially useful to facilitate human
understanding. For all datasets, we employed the radial basis function (RBF) kernel with entries
ki,j = k(xi, xj) = exp(−γ‖xi − xj‖), which satisfies the conditions of Corollary 3 for sufficiently
large γ (c.f. Example 4, see Example 5 and following discussion for alternative feasible kernels).

The Nearest Prototype Classifier: While our primary interest is in interpretable prototype selec-
tion and criticism, prototypes may also be useful for speeding up memory-based machine learning
techniques such as the nearest neighbor classifier by restricting the neighbor search to the prototypes,
sometimes known as the nearest prototype classifier (Bien and Tibshirani, 2011; Kuncheva and
Bezdek, 1998). This classification provides an objective (although indirect) evaluation of the quality
of the selected prototypes, and is useful for setting hyperparameters. We employ a 1 nearest neighbor
classifier using the Hilbert space distance induced by the kernels. Let yi ∈ [k] denote the label
associated with each prototype i ∈ S, for k classes. As we employ normalized kernels (where the
diagonal is 1), it is sufficient to measure the pairwise kernel similarity. Thus, for a test point x̂, the
nearest neighbor classifier reduces to:

ŷ = yi∗, where i∗ = argmin
i∈S

‖x̂− xi‖2HK
= argmax

i∈S
k(x̂, xi).

5.1 MMD-critic evaluated on USPS Digits Dataset

The USPS hand written digits dataset Hull (1994) consists of n = 7291 training (and 2007 test)
greyscale images of 10 handwritten digits from 0 to 9. We consider two kinds of RBF kernels
(i) global: where the pairwise kernel is computed between all data points, and (ii) local: given
by exp(−γ‖xi − xj‖)1[yi=yj ], i.e. points in different classes are assigned a similarity score of
zero. The local approach has the effect of pushing points in different classes further apart. The
kernel hyperparameter γ was chosen based to maximize the average cross-validated classification
performance, then fixed for all other experiments.

Classification: We evaluated nearest prototype classifiers using MMD-critic, and compared to
baselines (and reported performance) from Bien and Tibshirani (2011) (abbreviated as PS) and their
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Figure 1: Classification error vs. number of prototypes m = |S|. MMD-critic shows comparable
(or improved) performance as compared to other models (left). Random subset of prototypes and
criticism from the USPS dataset (right).

implementation of K-medoids. Figure 1(left) compares MMD-critic with global and local kernels,
to the baselines for different numbers of selected prototypes m = |S|. Our results show comparable
(or improved) performance as compared to other models. In particular, we observe that the global
kernels out-perform the local kernels2 by a small margin. We note that MMD is particularly effective
at selecting the first few prototypes (i.e. speed of error reduction as number of prototypes increases)
suggesting its utility for rapidly summarising the dataset.

Selected Prototypes and Criticism: Fig. 1 (right) presents a randomly selected subset of the
prototypes and criticism from the MMD-critic using the local kernel. We observe that the prototypes
capture many of the common ways of writing digits, while the criticism clearly capture outliers.

5.2 Qualitative Measure: Prototypes and Criticisms of Images

In this section, we learn prototypes and criticisms from the Imagenet dataset (Russakovsky et al.,
2015) using image embeddings from He et al. (2015). Each image is represented by a 2048 dimensions
vector embedding, and each image belongs to one of 1000 categories. We select two breeds of one
category (e.g., Blenheim spaniel) and run MMD-critic to learn prototypes and criticism. As shown
in Figure 2, MMD-critic learns reasonable prototypes and criticisms for two types of dog breeds. On
the left, criticisms picked out the different coloring (second criticism is in black and white picture),
as well as pictures capturing movements of dogs (first and third criticisms). Similarly, on the right,
criticisms capture the unusual, but potentially frequent pictures of dogs in costumes (first and second
criticisms).

5.3 Quantitative measure: Prototypes and Criticisms improve interpretability

We conducted a human pilot study to collect objective and subjective measures of interpretability
using MMD-critic. The experiment used the same dataset as Section 5.2. We define ‘interpretability’
in this work as the following: a method is interpretable if a user can correctly and efficiently predict
the method’s results. Under this definition, we designed a predictive task to quantitatively evaluate
the interpretability. Given a randomly sampled data point, we measure how well a human can predict
a group it belongs to (accuracy), and how fast they can perform the task (efficiency). We chose this
dataset as the task of assigning a new image to a group requires groups to be well-explained but does
not require specialized training.

We presented four conditions in the experiment. 1) raw images condition (Raw Condition) 2)
Prototypes Only (Proto Only Condition) 3) Prototypes and criticisms (Proto and Criticism Condition)
4) Uniformly sampled data points per group (Uniform Condition). Raw Condition contained 100
images per species (e.g., if a group contains 2 species, there are 200 images) Proto Only Condition,
Proto and Criticism Condition and Uniform Condition contains the same number of images.

2 Note that the local kernel trivially achieves perfect accuracy. Thus, in order to measure generalization
performance, we do not use class labels for local kernel test instances i.e. we use the global kernel instead of
local kernel for test instances – regardless of training.
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Figure 2: Learned prototypes and criticisms from Imagenet dataset (two types of dog breeds)

We used within-subject design to minimize the effect of inter-participant variability, with a balanced
Latin square to account for a potential learning effect. The four conditions were assigned to four
participants (four males) in a balanced manner. Each subject answered 21 questions, where the first
three questions are practice questions and not included in the analysis. Each question showed six
groups (e.g., red fox, kit fox) of a species (e.g., fox), and a randomly sampled data point that belongs
to one of the groups. Subjects were encouraged to answer the questions as quickly and accurately
as possible. A break was imposed after each question to mitigate the potential effect of fatigue. We
measured the accuracy of answers as well as the time they took to answer each question. Participants
were also asked to respond to 10 5-point Likert scale survey questions about their subjective measure
of accuracy and efficiency. Each survey question compared a pair of conditions (e.g., Condition A
was more helpful than condition B to correctly (or efficiently) assign the image to a group).

Subjects performed the best using Proto and Criticism Condition (M=87.5%, SD=20%). The
performance with Proto Only Condition was relatively similar (M=75%, SD=41%), while that with
Uniform Condition (M=55%, SD=38%, 37% decrease) and Raw Condition (M=56%, SD=33%, 36%
decrease) was substantially lower. In terms of speed, subjects were most efficient using Proto Only
Condition (M=1.04 mins/question, SD=0.28, 44% decrease compared to Raw Condition), followed
by Uniform Condition (M=1.31 mins/question, SD=0.59) and Proto and Criticism Condition (M=1.37
mins/question, SD=0.8). Subjects spent the most time with Raw Condition (M=1.86 mins/question,
SD=0.67).

Subjects indicated their preference of Proto and Criticism Condition over Raw Condition and
Uniform Condition. In a survey question that asks to compare Proto and Criticism Condition and
Raw Condition, a subject added that “[Proto and Criticism Condition resulted in] less confusion
from trying to discover hidden patterns in a ton of images, more clues indicating what features are
important". In particular, in a question that asks to compare Proto and Criticism Condition and
Proto Only Condition, a subject said that “The addition of criticisms made it easier to locate the
defining features of the cluster within the prototypical images". The humans’ superior performance
with prototypes and criticism in this preliminary study shows that providing criticisms together with
prototypes is a promising direction to improve the interpretability.

6 Conclusion

We present the MMD-critic, a scalable framework for prototype and criticism selection to improve
the interpretability of complex data distributions. To our best knowledge, ours is the first work which
leverages the BMC framework to generate explanations. Further, MMD-critic shows competitive
performance as a nearest prototype classifier compared to to existing methods. When criticism is
given together with prototypes, a human pilot study suggests that humans are better able to perform a
predictive task that requires the data-distributions to be well-explained. This suggests that criticism
and prototypes are a step towards improving interpretability of complex data distributions. For future
work, we hope to further explore the properties of MMD-critic such as the effect of the choice of
kernel, and weaker conditions on the kernel matrix for submodularity. We plan to explore applications
to larger datasets, aided by recent work on distributed algorithms for submodular optimization. We
also intend to complete a larger scale user study on how criticism and prototypes presented together
affect human understanding.
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Proof of Theorem 2

Observe that from the element-wise upper bound on H, the following element-wise inequality holds h∗E ≤
H ≤ h∗E+ νE′. Thus, from the linearity of F (H, S) = 〈A(S),H〉 with respect to H, we have that:

F (h∗E, S) ≤ F (H, S) ≤ F (h∗E+ νE′, S),

where (by linearity) F (h∗E+ νE′, S) = h∗F (E,S) + νF (E′, S).

Next, employing terms: a(S) = F (E,S) = 〈H(S),E〉 and b(S) = F (E′, S) = 〈A(S),E′〉. we may rewrite
the bounds as:

h∗a(S) ≤ F (H, S) ≤ h∗a(S) + νb(S).

Monotonicity:
The function F (H, S) is monotone with respect to S if: F (H, S ∪ {u})− F (H, S) ≥ 0. Applying the lower
and upper bounds, we have that:

F (H, S ∪ {u})− F (H,S) ≥ h∗a(S ∪ {u})− h∗a(S)− νb(S) ≥ 0

=⇒ ν ≤ h∗a(S ∪ {u})− h∗a(S)
b(S)

= h∗α(n,m)

Thus, when the off-diagonal terms satisfy hi,j ≤ h∗α(n,m) ∀ 0 ≤ m ≤ m∗, ∀ (i, j) ∈ E′, we have that
F (H, S) is monotone.

Submodularity:
The function F (H,S) is submodular with respect to S if: F (H, S ∪ {u}) + F (H, S ∪ {v}) ≥ F (H, S ∪
{u, v}) + F (H, S). Again, applying the lower and upper bounds, we have that:

F (H,S ∪ {u}) + F (H, S ∪ {v})− F (H, S ∪ {u, v})− F (H, S)

≥ h∗a(S ∪ {u}) + h∗a(S ∪ {v})− h∗a(S ∪ {u, v})− νb(S ∪ {u, v})− h∗a(S)− νb(S) ≥ 0

=⇒ ν ≤ h∗
a(S ∪ {u}) + a(S ∪ {v})− a(S ∪ {u, v})− a(S)

b(S ∪ {u, v}) + b(S)
= h∗β(n,m)

Thus, when the off-diagonal terms satisfy hi,j ≤ h∗β(n,m) ∀ 0 ≤ m ≤ m∗, ∀ (i, j) ∈ E′, we have that
F (H, S) is submodular.

Proof of Corollary 3

Based on the diagonal dominance assumption on K, it is clear that E′ = {i, j ∈ [n] i 6= j} indexes the off
diagonal terms, and E = 1−E′ = I. Given A(S) with entries ai,j(S) = 2

n|S|1[j∈S] −
1
|S|2 1[i∈S]1[j∈S], we can

compute the bounds (8) simply by enumerating sums as:

a(S) = 〈A(S), I〉 = 2m

nm
− m

m2
=

2

n
− 1

m

b(S) = 〈A(S), 1− I〉 = 2(nm−m)

nm
− m2 −m

m2
=

2(n− 1)

n
− m− 1

m

Monotonicity: Jp(·) is monotone when the upper bound of the off-diagonal terms is given by α(n,m) =
a(S∪{u})−a(S)

b(S)
by Theorem 2. We have that:

a(S ∪ {u})− a(S) = −1
m+ 1

+
1

m
, b(S) =

2(n− 1)

n
− m− 1

m
.

Thus:
α(n,m) =

n

(m+ 1)(m(n− 2) + n)
.

This is a decreasing function wrtm. Further, for the ground set 2[n], we have thatm∗ = n, and α(n, n) = 1
n2−1

Submodularity: Jp(·) is submodular when the upper bound of the off-diagonal terms is given by β(n,m) =
a(S∪{u})+a(S∪v})−a(S∪{u,v})−a(S)

b(S∪{u,v})+b(S)
by Theorem 2. We have that:

a(S ∪ {u}) + a(S ∪ v})− a(S ∪ {u, v})− a(S) = −2
m+ 1

+
1

m+ 1
++

1

m

b(S ∪ {u, v}) + b(S) =
4(n− 1)

n
− m+ 1

m+ 2
− m− 1

m
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Thus:
β(n,m) =

n

(m+ 1)(n(m2 + 3m+ 1)− 2(m2 + 2m))

This is a decreasing function wrt m. Further, for the ground set 2[n], we have that m∗ = n, and β(n, n) =
1

n3+2n2−2n−3
.

Combined Bound: Finally, we show that β(n, n) ≤ α(n, n), so that the bound ki,j ≤ k∗β(n, n) is sufficient
to guarantee both monotonicity and submodularity.

β(n, n) ≤ α(n, n)

=⇒ 1

n3 + 2n2 − 2n− 3
≤ 1

n2 − 1

=⇒ n2 − 1 ≤ n3 + 2n2 − 2n− 3

=⇒ 0 ≤ n3 + n2 − n− 3

=⇒ 0 ≤ (n− 1)(n2 − 2)

which holds when n > −1 and n ≥
√
2. Thus β(n, n) ≤ α(n, n). The proof is complete.

Proof of Theorem 7

A discrete function is linear if it can be written in the form F (C) =
∑

i∈[n] wi1[i∈C]. Consider (9) and observe
that:

L(C) =
∑
l∈C

∣∣∣∣∣∣ 1n
∑
i∈[n]

k(xi, xl)−
1

m

∑
j∈S

k(xj , xl)

∣∣∣∣∣∣
=
∑
l∈[n]

∣∣∣∣∣∣ 1n
∑
i∈[n]

k(xi, xl)−
1

m

∑
j∈S

k(xj , xl)

∣∣∣∣∣∣
 1[l∈C]

=
∑
l∈[n]

wl1[l∈C],

where:

wl =

∣∣∣∣∣∣ 1n
∑
i∈[n]

k(xi, xl)−
1

m

∑
j∈S

k(xj , xl)

∣∣∣∣∣∣ .
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