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Abstract

This article presents Individual Conditional Expectation (ICE) plots, a tool for vi-
sualizing the model estimated by any supervised learning algorithm. Classical partial
dependence plots (PDPs) help visualize the average partial relationship between the
predicted response and one or more features. In the presence of substantial interac-
tion effects, the partial response relationship can be heterogeneous. Thus, an average
curve, such as the PDP, can obfuscate the complexity of the modeled relationship.
Accordingly, ICE plots refine the partial dependence plot by graphing the functional
relationship between the predicted response and the feature for individual observations.
Specifically, ICE plots highlight the variation in the fitted values across the range of
a covariate, suggesting where and to what extent heterogeneities might exist. In ad-
dition to providing a plotting suite for exploratory analysis, we include a visual test
for additive structure in the data generating model. Through simulated examples and
real data sets, we demonstrate how ICE plots can shed light on estimated models in
ways PDPs cannot. Procedures outlined are available in the R package ICEbox.

1 Introduction

The goal of this article is to present Individual Conditional Expectation (ICE) plots, a
toolbox for visualizing models produced by “black box” algorithms. These algorithms use
training data {xi, yi}Ni=1 (where xi = (xi,1, . . . , xi,p) is a vector of predictors and yi is the
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response) to construct a model f̂ that maps the features x to fitted values f̂(x). Though
these algorithms can produce fitted values that enjoy low generalization error, it is often
difficult to understand how the resultant f̂ uses x to generate predictions. The ICE toolbox
helps visualize this mapping.

ICE plots extend Friedman (2001)’s Partial Dependence Plot (PDP), which highlights
the average partial relationship between a set of predictors and the predicted response. ICE
plots disaggregate this average by displaying the estimated functional relationship for each
observation. Plotting a curve for each observation helps identify interactions in f̂ as well as
extrapolations in predictor space.

The paper proceeds as follows. Section 2 gives background on visualization in machine
learning and introduces PDPs more formally. Section 3 describes the procedure for generat-
ing ICE plots and its associated plots. In Section 4 simulated data examples illustrate that
ICE plots can be used to identify features of f̂ that are not visible in PDPs, or where the
PDPs may even be misleading. Each example is chosen to illustrate a particular principle.
Section 5 provides examples of ICE plots on real data. In Section 6 we shift the focus from
the fitted f̂ to a data generating process f and use ICE plots as part of a visual test for
additivity in f . Section 7 concludes.

2 Background

2.1 Survey of Black Box Visualization

There is an extensive literature that attests to the superiority of black box machine learning
algorithms in minimizing predictive error, both from a theoretical and an applied perspective.
Breiman (2001b), summarizing, states “accuracy generally requires more complex prediction
methods ...[and] simple and interpretable functions do not make the most accurate predic-
tors.” Problematically, black box models offer little in the way of interpretability, unless
the data is of very low dimension. When we are willing to compromise interpretability for
improved predictive accuracy, any window into black box’s internals can be beneficial.

Authors have devised a variety of algorithm-specific techniques targeted at improving the
interpretability of a particular statistical learning procedure’s output. Rao and Potts (1997)
offers a technique for visualizing the decision boundary produced by bagging decision trees.
Although applicable to high dimensional settings, their work primarily focuses on the low
dimensional case of two covariates. Tzeng (2005) develops visualization of the layers of neu-
ral networks to understand dependencies between the inputs and model outputs and yields
insight into classification uncertainty. Jakulin et al. (2005) improves the interpretability of
support vector machines by using a device called “nomograms” which provide graphical rep-
resentation of the contribution of variables to the model fit. Pre-specified interaction effects
of interest can be displayed in the nomograms as well. Breiman (2001a) uses randomiza-
tion of out-of-bag observations to compute a variable importance metric for Random Forests
(RF). Those variables for which predictive performance degrades the most vis-a-vis the orig-
inal model are considered the strongest contributors to forecasting accuracy. This method
is also applicable to stochastic gradient boosting (Friedman, 2002). Plate et al. (2000) plots
neural network predictions in a scatterplot for each variable by sampling points from covari-
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ate space. Amongst the existing literature, this work is the most similar to ICE, but was
only applied to neural networks and does not have a readily available implementation.

Other visualization proposals are model agnostic and can be applied to a host of su-
pervised learning procedures. For instance, Strumbelj and Kononenko (2011) consider a
game-theoretic approach to assess the contributions of different features to predictions that
relies on an efficient approximation of the Shapley value. Jiang and Owen (2002) use quasi-
regression estimation of black box functions. Here, the function is expanded into an or-
thonormal basis of coefficients which are approximated via Monte Carlo simulation. These
estimated coefficients can then be used to determine which covariates influence the function
and whether any interactions exist.

2.2 Friedman’s PDP

Another particularly useful model agnostic tool is Friedman (2001)’s PDP, which this paper
extends. The PDP plots the change in the average predicted value as specified feature(s) vary
over their marginal distribution. Many supervised learning models applied across a number of
disciplines have been better understood thanks to PDPs. Green and Kern (2010) use PDPs
to understand the relationship between predictors and the conditional average treatment
effect for a voter mobilization experiment, with the predictions being made by Bayesian
Additive Regression Trees (BART, Chipman et al., 2010). Berk and Bleich (2013) demonstrate
the advantage of using RF and the associated PDPs to accurately model predictor-response
relationships under asymmetric classification costs that often arise in criminal justice settings.
In the ecological literature, Elith et al. (2008), who rely on stochastic gradient boosting,
use PDPs to understand how different environmental factors influence the distribution of a
particular freshwater eel.

To formally define the PDP, let S ⊂ {1, ..., p} and let C be the complement set of S.
Here S and C index subsets of predictors; for example, if S = {1, 2, 3}, then xS refers to
a 3 × 1 vector containing the values of the first three coordinates of x. Then the partial
dependence function of f on xS is given by

fS = ExC
[f(xS,xC)] =

∫
f(xS,xC)dP (xC) . (1)

Each subset of predictors S has its own partial dependence function fS, which gives the
average value of f when xS is fixed and xC varies over its marginal distribution dP (xC).
As neither the true f nor dP (xC) are known, we estimate Equation 1 by computing

f̂S =
1

N

N∑
i=1

f̂(xS,xCi) (2)

where {xC1, ...,xCN} represent the different values of xC that are observed in the training
data. Note that the approximation here is twofold: we estimate the true model with f̂ , the
output of a statistical learning algorithm, and we estimate the integral over xC by averaging
over the N xC values observed in the training set.
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This is a visualization tool in the following sense: if f̂S is evaluated at the xS observed
in the data, a set of N ordered pairs will result: {(xS`, f̂S`)}N`=1, where f̂S` refers to the
estimated partial dependence function evaluated at the `th coordinate of xS, denoted xS`.
Then for one or two dimensional xS, Friedman (2001) proposes plotting the N xS`’s versus
their associated f̂S`’s, conventionally joined by lines. The resulting graphic, which is called
a partial dependence plot, displays the average value of f̂ as a function of xS. For the
remainder of the paper we consider a single predictor of interest at a time (|S| = 1) and
write xS without boldface accordingly.

As an extended example, consider the following data generating process with a simple
interaction:

Y = 0.2X1 − 5X2 + 10X21X3≥0 + E , (3)

E iid∼ N (0, 1) , X1, X2, X3
iid∼ U (−1, 1) .

We generate 1,000 observations from this model and fit a stochastic gradient boosting
model (SGB) via the R package gbm (Ridgeway, 2013) where the number of trees is chosen
via cross-validation and the interaction depth is set to 3. We now consider the association
between predicted Y values and X2 (S = X2). In Figure 1a we plot X2 versus Y in our
sample. Figure 1b displays the fitted model’s partial dependence plot for predictor X2. The
PDP suggests that on average, X2 is not meaningfully associated with the predicted Y . In
light of Figure 1a, this conclusion is plainly wrong. Clearly X2 is associated with Y ; it is
simply that the averaging inherent in the PDP shields this discovery from view.

(a) Scatterplot of Y versus X2
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(b) PDP

Figure 1: Scatterplot and PDP of X2 versus Y for a sample of size 1000 from the process
described in Equation 3. In this example f̂ is fit using SGB. The PDP incorrectly suggests
that there is no meaningful relationship between X2 and the predicted Y .

In fact, the original work introducing PDPs argues that the PDP can be a useful summary
for the chosen subset of variables if their dependence on the remaining features is not too
strong. When the dependence is strong, however – that is, when interactions are present –
the PDP can be misleading. Nor is the PDP particularly effective at revealing extrapolations
in X -space. ICE plots are intended to address these issues.
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3 The ICE Toolbox

3.1 The ICE Procedure

Visually, ICE plots disaggregate the output of classical PDPs. Rather than plot the target
covariates’ average partial effect on the predicted response, we instead plot the N estimated
conditional expectation curves: each reflects the predicted response as a function of covariate
xS, conditional on an observed xC .

Consider the observations {(xSi, xCi)}Ni=1, and the estimated response function f̂ . For

each of the N observed and fixed values of xC , a curve f̂
(i)
S is plotted against the observed

values of xS. Therefore, at each x-coordinate, xS is fixed and the xC varies across N
observations. Each curve defines the conditional relationship between xS and f̂ at fixed
values of xC . Thus, the ICE algorithm gives the user insight into the several variants of
conditional relationships estimated by the black box.

The ICE algorithm is given in Algorithm 1 in Appendix A. Note that the PDP curve
is the average of the N ICE curves and can thus be viewed as a form of post-processing.
Although in this paper we focus on the case where |S| = 1, the pseudocode is general. All
plots in this paper are produced using the R package ICEbox, available on CRAN.

Returning to the simulated data described by Equation 3, Figure 2 shows the ICE plot
for the SGB when S = X2. In contrast to the PDP in Figure 1b, the ICE plot makes it
clear that the fitted values are related to X2. Specifically, the SGB’s predicted values are
approximately linearly increasing or decreasing in X2 depending upon which region of X an
observation is in.

Figure 2: SGB ICE plot for X2 from 1000 realizations of the data generating process described
by Equation 3. We see that the SGB’s fitted values are either approximately linearly increasing
or decreasing in X2.

Now consider the well known Boston Housing Data (BHD). The goal in this dataset is
to predict a census tract’s median home price using features of the census tract itself. It is
important to note that the median home prices for the tracts are truncated at 50, and hence
one may observe potential ceiling effects when analyzing the data. We use Random Forests
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(RF) implemented in R (Liaw and Wiener, 2002) to fit f̂ . The ICE plot in Figure 3 examines
the association between the average age of homes in a census tract and the corresponding
median home value for that tract (S = age). The PDP is largely flat, perhaps displaying a
slight decrease in predicted median home price as age increases. The ICE plot shows those
observations for which increasing age is actually associated with higher predicted values,
thereby describing how individual behavior departs from the average behavior.

Figure 3: RF ICE plot for BHD for predictor age. The highlighted thick line is the PDP. For
each curve, the location of its observed age is marked by a point. For some observations,
higher age is associated with a higher predicted values. The upper set of tick marks on the
horizontal axis indicate the observed deciles of age.

3.2 The Centered ICE Plot

When the curves have a wide range of intercepts and are consequently “stacked” on each
other, heterogeneity in the model can be difficult to discern. In Figure 3, for example,
the variation in effects between curves and cumulative effects are veiled. In such cases the
“centered ICE” plot (the “c-ICE”), which removes level effects, is useful.

c-ICE works as follows. Choose a location x∗ in the range of xS and join or “pinch”
all prediction lines at that point. We have found that choosing x∗ as the minimum or the
maximum observed value results in the most interpretable plots. For each curve f̂ (i) in the
ICE plot, the corresponding c-ICE curve is given by

f̂
(i)
cent = f̂ (i) − 1f̂(x∗,xCi), (4)

where the unadorned f̂ denotes the fitted model and 1 is a vector of 1’s of the appropriate
dimension. Hence the point (x∗, f̂(x∗,xCi)) acts as a “base case” for each curve. If x∗ is the
minimum value of xS, for example, this ensures that all curves originate at 0, thus removing
the differences in level due to the different xCi’s. At the maximum xS value, each centered
curve’s level reflects the cumulative effect of xS on f̂ relative to the base case. The result is
a plot that better isolates the combined effect of xS on f̂ , holding xC fixed.
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Figure 4 shows a c-ICE plot for the predictor age of the BHD for the same RF model as
examined previously. From the c-ICE plot we can now see clearly that the cumulative effect
of age on predicted median value increases for some cases, and decreases for others. Such
divergences of the centered curves suggest the existence of interactions between xS and xC

in the model. Also, the magnitude of the effect, as a fraction of the range of y, can be seen
in the vertical axis displayed on the right of the graph.

Figure 4: c-ICE plot for age with x∗ set to the minimum value of age. The right vertical axis
displays changes in f̂ over the baseline as a fraction of y’s observed range. In this example,
interactions between age and other predictors create cumulative differences in fitted values
of up to about 14% of the range of y.

3.3 The Derivative ICE Plot

To further explore the presence of interaction effects, we develop plots of the partial derivative
of f̂ with respect to xS. To illustrate, consider the scenario in which xS does not interact
with the other predictors in the fitted model. This implies f̂ can be written as

f̂(x) = f̂(xS,xC) = g(xS) + h(xC), so that
∂f̂(x)

∂xS
= g′(xS), (5)

meaning the relationship between xS and f̂ does not depend on xC . Thus the ICE plot for
xS would display a set of N curves that share a single common shape but differ by level
shifts according to the values of xC .

As it can be difficult to visually assess derivatives from ICE plots, it is useful to plot
an estimate of the partial derivative directly. The details of this procedure are given in
Algorithm 2 in Appendix A. We call this a “derivative ICE” plot, or “d-ICE.” When no
interactions are present in the fitted model, all curves in the d-ICE plot are equivalent,
and the plot shows a single line. When interactions do exist, the derivative lines will be
heterogeneous.
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As an example, consider the d-ICE plot for the RF model in Figure 5. The plot suggests
that when age is below approximately 60, g′ ≈ 0 for all observed values of xC . In contrast,
when age is above 60 there are observations for which g′ > 0 and others for which g′ < 0,
suggesting an interaction between age and the other predictors. Also, the standard deviation
of the partial derivatives at each point, plotted in the lower panel, serves as a useful summary
to highlight regions of heterogeneity in the estimated derivatives (i.e., potential evidence of
interactions in the fitted model).

Figure 5: d-ICE plot for age in the BHD. The left vertical axis’ scale gives the partial
derivative of the fitted model. Below the d-ICE plot we plot the standard deviation of the
derivative estimates at each value of age. The scale for this standard deviation plot is on
the bottom of the right vertical axis.

3.4 Visualizing a Second Feature

Color allows overloading of ICE, c-ICE and d-ICE plots with information regarding a second
predictor of interest xk. Specifically, one can assess how the second predictor influences the
relationship between xS and f̂ . If xk is categorical, we assign colors to its levels and plot
each prediction line f̂ (i) in the color of xik’s level. If xk is continuous, we vary the color shade
from light (low xk) to dark (high xk).

We replot the c-ICE from Figure 4 with lines colored by a newly constructed predictor,
x = 1(rm > median(rm)). Lines are colored red if the average number of rooms in a census
tract is greater than the median number of rooms across all all census tracts and are colored
blue otherwise. Figure 6 suggests that for census tracts with a larger number of average
rooms, predicted median home price value is positively associated with age and for census
tracts with a lesser number of average rooms, the association is negative.
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Figure 6: The c-ICE plot for age of Figure 4 in the BHD. Red lines correspond to observations
with rm greater than the median rm and blue lines correspond to those with fewer.

4 Simulations

Each of the following examples is designed to emphasize a particular model characteristic
that the ICE toolbox can detect. To more clearly demonstrate given scenarios with minimal
interference from issues that one typically encounters in actual data, such as noise and model
misspecification, the examples are purposely stylized.

4.1 Additivity Assessment

We begin by showing that ICE plots can be used as a diagnostic in evaluating the extent to
which a fitted model f̂ fits an additive model.

Consider again the prediction task in which f̂(x) = g(xS) +h(xC). For arbitrary vectors
xCi and xCj, f̂(xS,xCi) − f̂(xS,xCj) = h(xCi) − h(xCj) for all values of xS. The term
h(xCi)− h(xCj) represents the shift in level due to the difference between xCi and xCj and
is independent of the value of xS. Thus the ICE plot for xS will display a set of N curves
that share a common shape but differ by level shifts according to the unique values of xC .

As an illustration, consider the following additive data generating model

Y = X2
1 +X2 + E , X1, X2

iid∼ U (−1, 1) , E iid∼ N (0, 1) .

We simulate 1000 independent (X i, Yi) pairs according to the above and fit a generalized
additive model (GAM, Hastie and Tibshirani, 1986) via the R package gam (Hastie, 2013). As
we have specified it, the GAM assumes

f(X) = f1(X1) + f2(X2) + f3(X1X2)

where f1, f2 and f3 are unknown functions estimated internally by the procedure using
smoothing splines. Because f3 appears in the model specification but not in the data gener-
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ating process, any interaction effects that GAM fits are spurious.1 Here, ICE plots inform us
of the degree to which interactions were fit. Were there no interaction in f̂ between X1 and
X2, the ICE plots for X1 would display a set of curves equivalent in shape but differing in
level.

Figure 7a displays the ICE plots for X1 and indicates that this is indeed the case: all
curves display a similar parabolic relationship between f̂ and X1, shifted by a constant,
and independent of the value of X2. Accordingly, the associated d-ICE plot in Figure 7b
displays little variation between curves. The ICE suite makes it apparent that f3 (correctly)
contributes relatively little to the GAM model fit. Note that additive structure cannot be
observed from the PDP alone in this example (or any other).

(a) ICE (b) d-ICE

Figure 7: ICE and d-ICE plots for S = X1 when f̂ is a GAM with possible interaction effects
between X1 and X2. So as to keep the plot uncluttered we plot only a fraction of all 1000
curves. In the ICE plots the dots indicate the actual location of X1 for each curve.

4.2 Finding interactions and regions of interactions

As noted in Friedman (2001), the PDP is most instructive when there are no interactions
between xS and the other features. In the presence of interaction effects, the averaging
procedure in the PDP can obscure any heterogeneity in f̂ . Let us return to the simple
interaction model

Y = 0.2X1 − 5X2 + 10X21X3≥0 + E , (6)

E iid∼ N (0, 1) , X1, X2, X3
iid∼ U (−1, 1)

to examine the relationship between SGB’s f̂ and X3. Figure 8a displays an ICE plot for X3.
Similar to the PDP we saw in Section 1, the plot suggests that averaged over X1 and X2,

1If we were to eliminate f3 from the GAM then we would know a priori that f̂ would not display interaction
effects.
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f̂ is not associated with X3. By following the non-parallel ICE curves, however, it is clear
that X3 modulates the fitted value through interactions with X1 and X2.

Where in the range of X3 do these interactions occur? The d-ICE plot of Figure 8b shows
that interactions are in a neighborhood around X3 ≈ 0. This is expected; in the model given
by Equation 6, being above or below X3 = 0 changes the response level. The plot suggests
that the fitted model’s interactions are concentrated in X3 ∈ [−0.025, 0.025] which we call
the “region of interaction” (ROI).

Generally, ROIs are identified by noting where the derivative lines are variable. In
our example, the lines have highly variable derivatives (both positive and negative) in
[−0.025, 0.025]. The more heterogeneity in these derivative lines, the larger the effect of
the interaction between xS and xC on the model fit. ROIs can be seen most easily by plot-
ting the standard deviation of the derivative lines at each xS value. In this example, the
standard deviation function is plotted in the bottom pane of Figure 8b and demonstrates
that fitted interactions peak at X3 ≈ 0.

(a) ICE (10 curves) (b) d-ICE

Figure 8: ICE plots for an SGB fit to the simple interaction model of Equation 6.

4.3 Extrapolation Detection

As the number of predictors p increases, the sample vectors x1, . . .xN are increasingly sparse
in the feature space X . A consequence of this curse of dimensionality is that for many x ∈ X ,
f̂(x) represents an extrapolation rather than an interpolation (see Hastie et al., 2009 for a
more complete discussion).

Extrapolation may be of particular concern when using a black-box algorithm to forecast
xnew. Not only may f̂(xnew) be an extrapolation of the (x, y) relationship observed in the
training data, but the black-box nature of f̂ precludes us from gaining any insight into
what the extrapolation might look like. Fortunately, ICE plots can cast light into these
extrapolations.

Recall that each curve in the ICE plot includes the fitted value f̂(xSi,xCi) where xSi is
actually observed in the training data for the ith observation. The other points on this curve

11



represent extrapolations in X . Marking each curve in the ICE plot at the observed point
helps us assess the presence and nature of f̂ ’s hypothesized extrapolations in X .

Consider the following model:

Y = 10X2
1 + 1X2≥0 + E , (7)

E iid∼ N
(
0, .12

)
,

[
X1

X2

]
∼


U (−1, 0) , U (−1, 0) w.p. 1

3

U (0, 1) , U (−1, 0) w.p. 1
3

U (−1, 0) , U (0, 1) w.p. 1
3

U (0, 1) , U (0, 1) w.p. 0.

Notice P (X1 > 0, X2 > 0) = 0, leaving the quadrant [0, 1] × [0, 1] empty. We simulate
1000 observations and fit a RF model to the data. The ICE plot for x1 is displayed in Figure
9a with the points corresponding to the 1000 observed (x1, x2) values marked by dots. We
highlight observations with x2 < 0 in red and those with x2 ≥ 0 in blue. The two subsets
are plotted separately in Figures 9b and 9c.

The absence on the blue curves of points where both x1, x2 > 0 confirms that the prob-
ability of X1 > 0 and X2 > 0 equals zero. From Figure 9c, we see that in this region of
X , f̂ increases roughly in proportion with x21 even though no data exists. Ostensibly the
RF model has extrapolated the polynomial relationship from the observed X -space to where
both x1 > 0 and x2 > 0.

Whether it is desirable for f̂ to display such behavior in unknown regions of X is de-
pendent on the character of the extrapolations in conjunction with the application at hand.
Moreover, different algorithms will likely give different extrapolations. Examining the ICE
plots can reveal the nature of these extrapolations and guide the user to a suitable choice.

(a) All observations (b) Observations with x2 < 0 (c) Observations with x2 ≥ 0

Figure 9: ICE plots for S = x1 of a RF model fit to Equation 7. The left plot shows the ICE
plot for the entire dataset where x2 < 0 is colored red and x2 ≥ 0 in blue. The middle plot
shows only the red curves and the right only the blue. Recall that there is no training data
in the quadrant [0, 1]× [0, 1], and so Figure 9c contains no points for observed values when
x1 > 0 (when both x1 and x2 are positive). Nevertheless, from Figure 9c’s ICE curves it is
apparent that the fitted values are increasing in x1 for values above 0. Here, the ICE plot
elucidates the existence and nature of the RF’s extrapolation outside the observed X -space.
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5 Real Data

We now demonstrate the ICE toolbox on three real data examples. We emphasize features
of f̂ that might otherwise have been overlooked.

5.1 Depression Clinical Trial

The first dataset comes from a depression clinical trial (DeRubeis et al., 2014). The response
variable is the Hamilton Depression Rating Scale (a common composite score of symptoms
of depression where lower scores correspond to being less depressed) after 15 weeks of treat-
ment. The treatments are placebo, cognitive therapy (a type of one-on-one counseling), and
paroxetine (an anti-depressant medication). The study also collected 37 covariates which are
demographic (e.g. age, gender, income) or related to the medical history of the subject (e.g.
prior medications and whether the subject was previously treated). For this illustration, we
drop the placebo subjects to focus on the 156 subjects who received either of the two active
treatments.

The goal of the analysis in DeRubeis et al. (2014) is to understand how different sub-
jects respond to different treatments, conditional on their personal covariates. The difference
between the two active treatments, assuming the classic linear (and additive) model for treat-
ment, was found to be statistically insignificant. If the clinician believes that the treatment
effect is heterogeneous and the relationship between the covariates and response is complex,
then flexible nonparametric models could be an attractive exploratory tool.

Using the ICE toolbox, one can visualize the impact of the treatment variable on an f̂
given by a black box algorithm. Note that extrapolations in the treatment indicator (i.e.
predicting at 0 for an observed 1 or vice versa) correspond to counterfactuals in a clinical
setting, allowing the researcher to see how the same patient might have responded to a
different treatment.

We first modeled the response as a function of the 37 covariates as well as treatment
to obtain the best fit of the functional relationship using the black-box algorithm BART

(implemented by Kapelner and Bleich, 2014) and obtained an in-sample R2 ≈ 0.40.
Figure 10a displays an ICE plot of the binary treatment variable, with cognitive ther-

apy coded as “0” and paroxetine coded as “1”, colored by marital status (blue if married
and red if unmarried). The plot shows a flat PDP, demonstrating no relationship between
the predicted response and treatment when averaging over the effects of other covariates.
However, the crossing of ICE curves indicates the presence of interactions in f̂ , which is
confirmed by the c-ICE plot in Figure 10b. After centering, it becomes clear that the flat
PDP obscures a complex relationship: the model predicts between -3 and +3 points on the
Hamilton scale, which is a highly clinically significant range (and almost 20% of the observed
response’s range). Further, we can see that BART fits an interaction between treatment and
marital status: married subjects are generally predicted to do better on cognitive therapy
and unmarried subjects are predicted to do better with paroxetine.

13



(a) ICE (b) c-ICE

Figure 10: ICE plots of a BART model for the effect of treatment on depression score after
15 weeks. Married subjects are colored in blue and unmarried subjects are colored in red.

5.2 White Wine

The second data set concerns 5,000 white wines produced in the vinto verde region of Portugal
obtained from the UCI repository (Bache and Lichman, 2013). The response variable is a
wine quality metric, taken to be the median preference score of three blind tasters on a
scale of 1-10, treated as continuous. The 11 covariates are physicochemical metrics that are
commonly collected for wine quality control such as citric acid content, sulphates, etc. The
model is fit with a neural network (NN) using the R package nnet (Venables and Ripley,
2002). We fit a NN with 3 hidden units and a small parameter value for weight decay2 and
achieved an in-sample R2 of approximately 0.37.

We find the covariate pH to be the most illustrative. The c-ICE plot is displayed in Figure
11a. Wines with high alcohol content are colored blue and wines with low alcohol content
are colored red. Note that the PDP shows a linear trend, indicating that on average, higher
pH is associated with higher fitted preference scores. While this is the general trend for wines
with higher alcohol content, the ICE plots reveal that interaction effects are present in f̂ .
For many white wines with low alcohol content, the illustration suggests a nonlinear and
cumulatively negative association. For these wines, the predicted preference score is actually
negatively associated with pH for low values of pH and then begins to increase — a severe
departure from what the PDP suggests. However, the area of increase contains no data
points, signifying that the increase is merely an extrapolation likely driven by the positive
trend of the high alcohol wines. Overall, the ICE plots indicate that for more alcoholic
wines, the predicted score is increasing in pH while the opposite is true for wines with low
alcohol content. Also, the difference in cumulative effect is meaningful; when varied from
the minimum to maximum values of pH, white wine scores vary by roughly 40% of the range

2Note that NN models are highly sensitive to the number of hidden units and weight decay parameter.
We therefore offer the following results as merely representative of the type of plots which NN models can
generate.
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(a) c-ICE for NN (b) d-ICE for NN

Figure 11: ICE plots of NN model for wine ratings versus pH of white wine colored by whether
the alcohol content is high (blue) or low (red). To prevent cluttering, only a fraction of the
5,000 observations are plotted.

of the response variable.
Examining the derivative plot of Figure 11b confirms the observations made above. The

NN model suggests interactions exist for lower values of pH in particular. Wines with high
alcohol content have mostly positive derivatives while those with low alcohol content have
mostly negative derivatives. As pH increases, the standard deviation of the derivatives de-
creases, suggesting that interactions are less prevalent at higher levels of pH.

5.3 Diabetes Classification in Pima Indians

The last dataset consists of 332 Pima Indians (Smith and Everhart, 1988) obtained from the
R library MASS. Of the 332 subjects, 109 were diagnosed with diabetes, the binary response
variable which was fit using seven predictors (with body metrics such as blood pressure,
glucose concentration, etc.). We model the data using a RF and achieve an out-of-bag
misclassification rate of 22%.

Once again, ICE plots offer the practitioner a more comprehensive view of the output
of the black box. For example, the covariate skin thickness about the triceps is plotted
as a c-ICE in Figure 12a. The PDP clearly shows an increase in the predicted centered
log odds of contracting diabetes. This is expected given that skin is a proxy for obesity,
a major risk factor for diabetes. However, the ICE plot illustrates a more elaborate model
fit. Many subjects with high skin have a flat risk of diabetes according to f̂ ; others with
comparable thickness exhibit a much larger centered log-odds increase.3 Figure 12b shows
that the RF model fits interactions across the range of skin with the largest heterogeneity in
effect occurring when skin is slightly above 30. This can be seen in the standard deviation
of the derivative in the bottom pane of Figure 12b.

3The curves at the top of the figure mainly correspond to younger people. Their estimated effect of high
thickness is seen to be an extrapolation.
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(a) c-ICE (b) d-ICE

Figure 12: ICE plots of a RF model for estimated centered logit of the probability of con-
tracting diabetes versus skin colored by subject age.

6 A Visual Test for Additivity

Thus far we have used the ICE toolbox to explore the output of black box models. We
have explored whether f̂ has additive structure or if interactions exist, and also examined
f̂ ’s extrapolations in X -space. To better visualize interactions, we plotted individual curves
in colors according to the value of a second predictor xk. We have not asked whether these
findings are reflective of phenomena in any underlying model.

When heterogeneity in ICE plots is observed, the researcher can adopt two mindsets.
When one considers f̂ to be the fitted model used for subsequent predictions, the hetero-
geneity is of interest because it determines future fitted values. This is the mindset we have
considered thus far. Separately, it might be interesting to ascertain whether interactions
between xS and xC exist in the data generating model, denoted f . This question exists for
other discoveries made using ICE plots, but we focus here on interactions.

The problem of assessing the statistical validity of discoveries made by examining plots
is addressed in Buja et al. (2009) and Wickham et al. (2010). The central idea in these
papers is to insert the observed plot randomly into a lineup of null plots generated from data
sampled under a null distribution. If the single real plot is correctly identified amongst 19
null plots, for example, then “the discovery can be assigned a p-value of 0.05” (Buja et al.,
2009). A benefit of this approach is that the procedure is valid despite the fact that we have
not specified the form of the alternative distribution — the simple instruction “find the plot
that appears different” is sufficient.

6.1 Procedure

We adapt this framework to the specific problem of using ICE plots to evaluate additivity in
a statistically rigorous manner. For the exposition in this section, suppose that the response
y is continuous, the covariates x are fixed, and y = f(x) + E . Further assume E [E ] = 0 and
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f(x) = g(xS) + h(xC), (8)

meaning the true x-conditional expectation of y is additive in functions of xS and xC . Let
F be the distribution of f̂ when Equation 8 holds and f is additive. We wish to test H0:
f̂ ∼ F versus Ha: H0 is false.

Recall that ICE plots displaying non-parallel curves suggest that f̂ is not additive in
functions of xS and xC . Thus if we can correctly identify a plot displaying such features
amongst K − 1 null plots generated under F , the discovery is valid at α = 1/K.

We sample from F by using backfitting (Breiman and Friedman, 1985) to generate g?

and h?, estimates of g and h, and then bootstrapping the residuals. Both g? and h? can be
obtained via any supervised learning procedures. The general procedure for |S| = 1 proceeds
is as follows.

1 Using backfitting, obtain g? and h?. Then compute a vector of fitted values ŷ? = g?(xS) +
h?(xC) and a vector of residuals r? := y − ŷ?.

2 Let rb be a random resampling of r?. If heteroscedasticity is of concern, one can keep r?’s
absolute values fixed and let rb be a permutation of r?’s signs. Define yb := ŷ? +rb. Note
that E [yb | x] is additive in g?(xS) and h?(xC).

3 Fit yb to X using the same learning algorithm that generated the original ICE (c-ICE or
d-ICE) plot to produce f̂b. This yields a potentially non-additive approximation to null
data generated using an additive model.

4 Display an ICE (or c-ICE or d-ICE) plot for f̂b. Deviations from additivity observed in this
plot must be due to sources other than interactions between xS and xC in the underlying
data.

5 Repeat steps (2) - (4) K−1 times, then randomly insert the true plot amongst these K−1
null plots.

6 If the viewer can correctly identify the true plot amongst all K plots, the discovery is valid
for level α = 1/K. Note that the discovery is conditional on the procedures for generating
g? and h?.

6.2 Examples

An application of this visual test where g is taken to be the “supersmoother” (Friedman,
1984) and h is a BART model is illustrated using the depression data of Section 5.1. We sample
rb by permuting signs. The data analyst might be curious if the ICE plot is consistent with
the treatment being additive in the model. We employ the additivity lineup test in Figure
13 using 20 images. We reject the null hypothesis of additivity of the treatment effect at
α = 1/20 = 0.05 since the true plot (row 2, column 2) is clearly identifiable. This procedure
can be a useful test in clinical settings when the treatment effect is commonly considered
linear and additive and can alert the practitioner that interactions should be investigated.

17



Figure 13: Additivity lineup test for the predictor treatment in the depression clinical trial
dataset of Section 5.1.

Another application of this visual test where g is taken to be the supersmoother and h
is a NN model is illustrated using the wine data of Section 5.2. Here again we sample rb by
permuting signs. The data analyst may want to know if the fitted model is suggestive of
interactions between pH and the remaining features in the underlying model. We employ the
additivity lineup test in Figure 14, again using 20 images.

Looking closely one sees that the first and third plots in the last row have the largest
range of cumulative effects and exhibit more curvature in individual curves than most of
the other plots, making them the most extreme violations of the null. Readers that singled
out the first plot in the last row would have a valid discovery at α = .05, but clearly the
evidence of non-additivity is much weaker here than in the previous example. Whereas
Figure 13 suggests the real plot is identifiable amongst more than 20 images, it would be
easy to confuse Figure 14’s true plot with the one in row 4, column 3. Hence there is only
modest evidence that pH’s impact on f̂ is different from what a NN might generate if there
were no interactions between pH and the other predictors.

7 Discussion

We developed a suite of tools for visualizing the fitted values generated by an arbitrary su-
pervised learning procedure. Our work extends the classical partial dependence plot (PDP),
which has rightfully become a very popular visualization tool for black-box machine learning
output. The partial functional relationship, however, often varies conditionally on the values
of the other variables. The PDP offers the average of these relationships and thus individual
conditional relationships are consequently masked, unseen by the researcher. These individ-
ual conditional relationships can now be visualized, giving researchers additional insight into
how a given black box learning algorithm makes use of covariates to generate predictions.

The ICE plot, our primary innovation, plots an entire distribution of individual condi-
tional expectation functions for a variable xS. Through simulations and real data examples,
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Figure 14: Additivity lineup test for the predictor pH in the white wine dataset of Section
5.2.

we illustrated much of what can be learned about the estimated model f̂ with the help of
ICE. For instance, when the remaining features xC do not influence the association between
xS and f̂ , all ICE curves lie on top of another. When f̂ is additive in functions of xC and
xS, the curves lie parallel to each other. And when the partial effect of xS on f̂ is influenced
by xC , the curves will differ from each other in shape. Additionally, by marking each curve
at the xS value observed in the training data, one can better understand f̂ ’s extrapolations.
Sometimes these properties are more easily distinguished in the complementary “centered
ICE” (c-ICE) and “derivative ICE” (d-ICE) plots. In sum, the suite of ICE plots provides a
tool for visualizing an arbitrary fitted model’s map between predictors and predicted values.

The ICE suite has a number of possible uses that were not explored in this work. While
we illustrate ICE plots using the same data as was used to fit f̂ , out-of-sample ICE plots
could also be valuable. For instance, ICE plots generated from random vectors in Rp can be
used to explore other parts of X space, an idea advocated by Plate et al. (2000). Further,
for a single out-of-sample observation, plotting an ICE curve for each predictor can illustrate
the sensitivity of the fitted value to changes in each predictor for this particular observation,
which is the goal of the “contribution plots” of Strumbelj and Kononenko (2011). Addition-
ally, investigating ICE plots from f̂ ’s produced by multiple statistical learning algorithms
can help the researcher compare models. Exploring other functionality offered by the ICEbox
package, such as the ability to cluster ICE curves, is similarly left for subsequent research.

The tools summarized thus far pertain to exploratory analysis. Many times the ICE
toolbox provides evidence of interactions, but how does this evidence compare to what
these plots would have looked like if no interactions existed? Section 6 proposed a testing
methodology. By generating additive models from a null distribution and introducing the
actual ICE plot into the lineup, interaction effects can be distinguished from noise, providing
a test at a known level of significance. Future work will extend the testing methodology to
other null hypotheses of interest.
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Supplementary Materials

The procedures outlined in Section 3 are implemented in the R package ICEbox available on
CRAN. Simulated results, tables, and figures specific to this paper can be replicated via the
script included in the supplementary materials. The depression data of Section 5.1 cannot
be released due to privacy concerns.
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A Algorithms

Algorithm 1 ICE algorithm: Given X, the N × p feature matrix, f̂ , the fitted model, S ⊂
{1, . . . , p}, the subset of predictors for which to compute partial dependence, return f̂

(1)
S , . . . , f̂

(N)
S ,

the estimated partial dependence curves for constant values of xC .

1: function ICE(X, f̂ , S)
2: for i← 1 . . . N do
3: f̂

(i)
S ← 0N×1

4: xC ←X[i, C] . fix xC at the ith observation’s C columns
5: for `← 1 . . . N do
6: xS ←X[`, S] . vary xS

7: f̂
(i)
S` ← f̂([xS , xC ]) . the ith curve’s `th coordinate

8: end for
9: end for

10: return [f̂
(1)
S , . . . , f̂

(N)
S ]

11: end function

Algorithm 2 d-ICE algorithm: Given X, the N × p feature matrix; f̂
(1)
S , . . . , f̂

(N)
S , the estimated

partial dependence functions for subset S in the ICE plot; D, a function that computes the nu-

merical derivative; returns df̂
(1)
S , . . . , df̂

(N)
S , the derivatives of the estimated partial dependence.

In our implementation D first smooths the ICE plot using the “supersmoother” and subsequently
estimates the derivative from the smoothed ICE plot.

1: function d-ICE(X, f̂
(1)
S , . . . , f̂

(N)
S , D)

2: for i← 1 . . . N do
3: df̂

(i)
S ← 0N×1

4: xC ←X[i, C] . row of the ith observation, columns corresponding to C
5: for `← 1 . . . N do
6: xS ←X[`, S]

7: df̂
(i)
S` ← D

[
f̂ (i)(xS ,xC)

]
. numerical partial derivative at f̂ (i)(xS ,xC) w.r.t. xS

8: end for
9: end for

10: return [df̂
(1)
S , . . . , df̂

(N)
S ]

11: end function
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