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ABSTRACT
Functional dependencies are important metadata used for
schema normalization, data cleansing and many other tasks.
The efficient discovery of functional dependencies in tables
is a well-known challenge in database research and has seen
several approaches. Because no comprehensive comparison
between these algorithms exist at the time, it is hard to
choose the best algorithm for a given dataset. In this ex-
perimental paper, we describe, evaluate, and compare the
seven most cited and most important algorithms, all solving
this same problem.

First, we classify the algorithms into three different cate-
gories, explaining their commonalities. We then describe all
algorithms with their main ideas. The descriptions provide
additional details where the original papers were ambiguous
or incomplete. Our evaluation of careful re-implementations
of all algorithms spans a broad test space including synthetic
and real-world data. We show that all functional depen-
dency algorithms optimize for certain data characteristics
and provide hints on when to choose which algorithm. In
summary, however, all current approaches scale surprisingly
poorly, showing potential for future research.

1. FUNCTIONAL DEPENDENCIES
Functional dependencies (FDs) express relationships be-

tween attributes of a database relation. An FD X → A
states that the values of attribute set X uniquely determine
the values of attribute A. For instance, the zipcode attribute
in an address relation usually determines the city attribute:
zipcode → city. Due to this property, functional dependen-
cies serve a wide range of data analysis, data integration,
and data cleansing tasks. In particular, they are frequently
used for schema normalization and database (re-)design.

Liu et al. provide an excellent survey of the literature, ana-
lyzing many algorithms for functional dependency discovery
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from an algorithmic and theoretical perspective [11]. Our
evaluation paper, on the other hand, provides brief descrip-
tions of the seven most cited and most important algorithms
with a focus on their practical implementation and evalu-
ation: Tane [7], Fun [14], Fd Mine [22], Dfd [1], Dep-
Miner [12], FastFDs [20], and Fdep [6]. While all algo-
rithms have the same goal, namely the discovery of all min-
imal, non-trivial functional dependencies in a given dataset,
they differ in their approach. Existing evaluations and com-
parisons of subsets of the algorithms do not show well how
the approaches differ in their runtime and memory behav-
ior, and there has been no comparative study of this com-
prehensive set of algorithms in the past. Therefore, it is
almost impossible for developers to find the right algorithm
for their needs.

In this paper, we analyze and compare the FD algorithms
in detail. We measure their execution time and memory
consumption on synthetic and real-world datasets and ex-
plain the algorithms’ behavior in different scenarios. Fur-
thermore, we provide hints on which algorithm should be
used for which datasets. Overall, we could confirm original
experimental results, where available.
Contributions. We classify seven FD algorithms by their
main concepts giving an overview on state-of-the-art devel-
opments. We revisit all algorithms and provide additional
descriptions for their practical implementation where their
original publications are sparse. We compare the algorithms
on different datasets and evaluate both runtime and mem-
ory usage. From our experimental results, we derive con-
crete suggestions on when to use which algorithm. We also
make all implementations, data, and the evaluation frame-
work available online1.
Structure. Section 2 gives an overview of FD discovery in
general, discussing common concepts, alternative approaches,
and our classification of discovery algorithms. Section 3
describes the implementation of the algorithms. Section 4
presents our evaluation results and Section 5 concludes the
advantages and disadvantages of each discovery algorithm.

2. OVERVIEW OF FD ALGORITHMS
We first formally define functional dependencies follow-

ing the notation of [7] and then classify the seven FD algo-
rithms by their technical and logical commonalities to give
an overview on state-of-the-art FD discovery approaches.

1
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2.1 Preliminaries
Given a relational schema R and an instance r over R, a

functional dependency (FD) X → A is a statement over a
set of attributes X ⊆ R and an attribute A ∈ R denoting
that all tuples in X uniquely determine the values in A [19].
More formally, let ti[A] be the value of tuple ti in attribute
A; the FD X → A holds iff for all pairs of tuples t1, t2 ∈ r
the following is true: if t1[B] = t2[B] for all B ∈ X, then
t1[A] = t2[A]. We call X the left hand side (lhs) of the
FD, and A right hand side (rhs). A functional dependency
X → A is minimal if no subset of X determines A, and it is
non-trivial if A /∈ X. To discover all functional dependencies
in a dataset, it suffices to discover all minimal, non-trivial
FDs, because all lhs-subsets are non-dependencies and all
lhs-supersets are dependencies by logical inference.

Liu et al. have shown that the complexity of FD discovery
is in O(n2(m

2
)22m) where m is the number of attributes and

n the number of records [11]. This complexity can be seen
when modeling the search space of FDs as a power set lattice
of all attribute combinations, i.e., a Hasse diagram. Each
node contains a unique set of attributes and is connected to
those nodes that contain either a direct super- or subset of
attributes. Figure 1 in Section 3.1 shows an example lat-
tice for three attributes A, B, and C. Each level i in this
lattice contains all attribute sets of size i. Intuitively, each
edge in the lattice represents one possible FD. As the lattice
contains 2m nodes and each node has m

2
edges on average,

the number of FD candidates is 2m · m
2

. An FD candidate
comprises m

2
attributes on average. To validate an FD can-

didate, a naive algorithm checks all records against all other
records yielding a complexity of n2 · m

2
string comparisons.

The resulting complexity O(n2(m
2

)22m) is, of course, an up-
per bound, because the seven FD algorithms use aggressive
candidate pruning and sophisticated validation methods.

Popular and efficient data structures for the validation of
FD candidates are so-called partitions, sometimes also called
position list indexes (PLI). First introduced by Cosmadakis
et al., a partition denoted by πX groups tuples into equiva-
lence classes by their values of attribute set X [4]. Thereby,
two tuples t1 and t2 of an attribute set X belong to the
same equivalence class iff ∀A ∈ X : t1[A] = t2[A]. Con-
sider, for instance, the tuples (Peter, Miller), (Thomas, Miller),
(Peter, Moore), and (Peter, Miller) in a relation Person(Name,

Family). Then, π{Name} = {{1, 3, 4}, {2}} and π{Family} =
{{1, 2, 4}, {3}}. A partition can, hence, efficiently be im-
plemented as a set of record id sets. To calculate larger
partitions, e.g., for π{Name,Family}, one can simply intersect
two smaller subset partitions by intersecting their equiv-
alence classes. In this way we calculate π{Name,Family} =
π{Name} ∩ π{Family} = {{1, 4}, {2}, {3}}.

Once calculated, the partitions can be used to validate an
FD candidate via refinement check: A partition π refines
a partition π′, if every equivalence class in π is a subset
of some equivalence class of π′. This means that tuples
with same values in π have also same values in π′, which
is the definition of a functional dependency. Therefore, the
functional dependency X → A holds iff πX refines π{A} [7].
The partition π = {{1, 2}, {3}}, for example, refines the
partition π′ = {{1, 2, 3}}, because both equivalence classes
in π map into the same class in π′. One can finally compress
partitions to so-called stripped partitions π̂ by removing all
equivalence classes with only a single entry, because these
are irrelevant for the refinement checks.

2.2 Classification
To better understand the seven functional dependency

discovery algorithms and their properties, we classify them
into three categories. A detailed discussion of each algo-
rithm follows in Section 3.

Lattice traversal algorithms: The algorithms Tane, Fun,
Fd Mine, and Dfd explicitly model the search space as a
power set lattice of attribute combinations in order to tra-
verse it. While Tane, Fun, and Fd Mine use a level-wise
bottom-up traversal strategy that builds upon the apriori-
gen candidate generation principle [2], Dfd implements a
depth-first random walk. Although the traversal strategies
vary, all four algorithms successively generate new FD can-
didates and validate them individually using stripped parti-
tions. To prune the search space, the algorithms derive the
validity of not yet checked candidates from already discov-
ered FDs and non-FDs. The pruning rules usually exploit
the minimality criterion of FDs (see Section 2.1) and have
a great overlap between the four approaches: all algorithms
in this class use and extend the pruning rules of Tane.

Difference- and agree-set algorithms: The algorithms
Dep-Miner and FastFDs build upon so-called difference-
and agree-sets to find all minimal functional dependencies.
Instead of successively checking FD candidates, the two al-
gorithms search for sets of attributes that agree on the values
in certain tuple pairs. The search space is, hence, primar-
ily defined by the cross product of all tuples. Intuitively,
attribute sets that agree on certain tuple values can func-
tionally determine only those attributes whose same tuples
agree. Once the agree sets are calculated, both algorithms
can derive all valid FDs from them: Dep-Miner first maxi-
mizes and then complements the agree sets in order to infer
the FDs; FastFDs first complements the agree sets into
difference-sets and then maximizes these difference-sets to
infer the FDs. For FD inference, Dep-Miner searches the
difference sets level-wise while FastFDs transforms them
into a search tree that it traverses depth-first.

Dependency induction algorithms: Dependency induc-
tion algorithms like Fdep start with a set of most general
dependencies, i.e., each attribute functionally determines all
other attributes, and then successively specialize this set us-
ing observations made in the data. For the specialization
part, Fdep compares all records pair-wise in order to find
attribute sets with equal projections on the two inspected
records. These attribute sets (and all their subsets) cannot
functionally determine any of the other attributes. Hence,
Fdep updates the current FDs as follows: It removes all
FDs that the current tuple pair violates and adds all super-
sets of removed FDs that can still be assumed to be valid.
When all records are compared, the remaining FDs must be
valid, minimal, and complete. The tuple-wise comparisons
are similar to the computation of difference- and agree-sets,
but the reasoning part differs: Fdep specializes the set of
dependencies with each observation, whereas Dep-Miner
and FastFDs first fully generate and maximize difference-
sets before they infer dependencies. Furthermore, Fdep is
the only algorithm that does not use stripped partitions.

2.3 Other Algorithms
For this evaluation paper, we have chosen the seven most

cited and most important FD discovery algorithms. Due



to the popularity of the topic, there are a few further ap-
proaches that the reader should be aware of.

In 1992, Mannila and Räihä published a survey on four
early FD discovery algorithms [13]. The described tech-
niques lay the foundations for most algorithms in our evalu-
ation: They already model the search space as hypergraphs,
use agree sets for the dependency checks and apply mini-
mality pruning to reduce the search space. The algorithms
are formally described and their complexities are analyzed,
but no implementation or comparative evaluation is given.

In 1993, Schlimmer introduced another early algorithm,
which uses a decision tree and a rich set of pruning rules to
infer functional dependencies [16]. Although the paper itself
did not evaluate the performance of the presented ideas, we
find most pruning rules and similar search strategies in the
algorithms of our evaluation, e.g., in Tane [7].

Apart from the exact and complete discovery algorithms
surveyed here, there is a body of work on approximate so-
lutions, such as [8] or [10]. We deliberately omit these ap-
proaches from our evaluation, because their results are in-
comparable: They can be faster than exact algorithms, but
they trade off efficiency with correctness or completeness.

3. SEVEN FD DISCOVERY ALGORITHMS
We now describe the seven most important, previously

published algorithms for exact functional dependency dis-
covery. The algorithms were carefully re-implemented in
Java based on their original publications and, in some cases,
with the help of the original authors. Each algorithm has
been coded by two experienced students with much interac-
tion among all authors of this paper. All implementations
follow the descriptions as closely as possible.

Where the original description and pseudo-code were not
sufficient, we supplemented our implementations with the
most probable solutions, which we describe in this section
as well. In cases where the supplementations were not obvi-
ous, the authors were contacted to gather further informa-
tion on the gaps and to help resolve specific questions. This
collaboration was especially helpful to build correct imple-
mentations of Tane, Fun, Dfd, and Fdep. We thank the
authors for their helpful feedback.

Please note that the original algorithms were introduced
in full scientific papers; in this experimental evaluation we
can provide only high-level descriptions of each. We provide
more details for those algorithmic parts that require more
explanations than given in the respective original paper.

3.1 TANE
The Tane algorithm by Huhtala et al. [7] is based on

three main concepts: partition refinement to check if a func-
tional dependency holds, apriori-gen to ensure that all and
only minimal functional dependencies are found, and prun-
ing rules to dynamically reduce the search space.

Like all lattice traversal algorithms, Tane models the
search space as Hasse diagram as described in Section 2.1.
Figure 1 depicts one such Hasse diagram for the relation
R = {A,B,C}. The lattice is partitioned into levels where
level Li contains all attribute combinations of size i. Instead
of calculating the entire lattice in the beginning, Tane starts
with Level 1 (attribute sets of size one) and then moves up-
wards level by level (bold lines in the example). In each level
Li, the algorithm tests all attribute combinations X ∈ Li
for the functional dependency X \ A→ A for all A ∈ X. If

a test delivers a new functional dependency, Tane prunes
all supersets of the discovered FD using a set of pruning
rules. When moving upwards to the next level, the apriori-
gen function [2] calculates only those attribute combinations
from the previous level that have not been pruned already.
Note that Figure 1 shows an example that we describe in
more detail in the end of this section.

ABC Level 3

AB AC ��HHBC Level 2

��ZZA B C Level 1

∅ Level 0

Figure 1: A pruned lattice used in TANE

Tane’s search space pruning is based on the fact that for a
complete result only minimal functional dependencies need
be discovered. To prune efficiently, the algorithm stores a
set of right-hand-side candidates C+(X) for each attribute
combination X. The set C+(X) = {A ∈ R | ∀B ∈ X :
X \ {A,B} → B does not hold} contains all attributes that
may still depend on set X. C+(X) is used in the following
three pruning rules:

Minimality pruning: If a functional dependency X \A→
A holds, A and all B ∈ C+(X) \ X can be removed from
C+(X). In other words, any FD X → B cannot be minimal,
if X contains the FD X \A→ A, because A makes X non-
minimal. Note that this definition also includes A = B.

Right-hand-side pruning: If C+(X) = ∅, the attribute
combinationX can be pruned from the lattice, because there
are no more right-hand-side candidates for a minimal func-
tional dependency.

Key pruning: If the attribute combination X is a key, it
can be pruned from the lattice. A key X is an attribute
combination that determines all other attributes R \X in a
relation R. Hence, all supersets of X are super keys and by
definition non-minimal.

To check all possible functional dependencies on a cur-
rent level, Tane uses stripped partitions π̂ as described in
Section 2.1. An FD X → A is valid iff π̂X refines π̂{A},
i.e., all equivalence classes in π̂X can entirely be mapped to
equivalence classes in π̂{A}. While traversing the attribute
lattice from bottom to top, Tane successively calculates
the stripped partitions for new attribute combinations from
their subsets via partition intersection.

A refinement check for an FD candidate is an expensive
operation. Therefore, Tane optimizes these checks using
so-called error measures. The error measure e(X) is the
minimum fraction of tuples to remove from attribute com-
bination X to be key. Each stripped partition holds such
an error measure. It is calculated in the partition intersec-
tion operation that creates new stripped partitions. Having
these error measures, Tane simply checks the validity of an
FD candidate X → A by testing if e(X) = e(X ∪ A) holds.
The special case e(X) = 0 shows that X is a key.

Our Tane implementation is based on the pseudo-code
given in [7] and a reference implementation provided at [17].



When implementing Tane, we found that the proposed key
pruning in [7] can lead to incorrect results: Once a key X has
been discovered, the pruning procedure deletes the attribute
combination X from the lattice (although its C+ set is not
empty); then, it splits X → R \ X into minimal FDs. To
split the key X into its minimal FDs, the procedure needs
to check all non-empty C+ sets of attribute combinations
within the same level. Due to previous key pruning, some
of these sets might be missing so that certain minimal FDs
are not generated. The following example illustrates this
key pruning problem: Let R = {A,B,C} be a relation with
two keys A and BC. Hence, the minimal functional depen-
dencies are A → B, A → C and BC → A. Now, we run
Tane as shown in Figure 1. Tane checks only the elements
in bold. The crossed elements have been deleted from the
lattice by the key pruning strategies described above. In
level L1, Tane finds the key A. Since B ∈ C+(B) and
C ∈ C+(C), Tane outputs A→ B and A→ C and deletes
A from the lattice. In level L2, Tane discovers the key
BC, but C+(AB) and C+(AC) are not available, because
A has already been removed. Therefore, the functional de-
pendency BC → A is not added to the result.

The pseudo-code at [17] bypasses the key pruning issue
by simply outputting key attribute combinations as keys and
not as minimal FDs. In order to produce the same results as
other algorithms, this is not a solution for us. Therefore, we
modified the key pruning step as follows: Instead of deleting
X from the lattice as described in the paper, our implemen-
tation keeps X in the lattice, but marks it as invalid. Invalid
lattice nodes are not tested for functional dependencies, but
they are used to generate further invalid nodes unless their
C+ sets are not empty. In this way, C+ sets are retained
as long as necessary. The key pruning still causes Tane
to skip many FD checks and, most importantly, saves ex-
pensive partition intersections, because invalid nodes do not
require stripped partitions.

3.2 FUN
Similar to Tane, the Fun algorithm by Novelli and Cic-

chetti traverses the attribute lattice level-wise bottom-up
and applies partition refinement techniques to find func-
tional dependencies [14,15]. However, Fun explores a smal-
ler portion of the search space through a more restrictive
candidate generation and a lazy look-up of cardinality val-
ues. The cardinality of an attribute combination X is the
number of distinct values in the projection of X. Like the
error measure in Tane, the cardinality values can be used
to optimize the validation of FD candidates.

Instead of C+ sets, Fun uses free sets and non-free sets
to prune FD candidates that yield only non-minimal FDs.
Free sets are sets of attributes that contain no element that
is functionally dependent on a subset of the remaining set.
In other words, no FD exists among the attributes of a free
set. The set of free sets FS is defined as follows [14]:

Definition 1. Let X ⊆ R be a set of attributes in relation
R, r be a relation instance of R and |X|r be the cardinality
of the projection of r over X, i.e., the number of distinct
values in X. Then, X ∈ FSr ⇔ @X ′ ⊂ X : |X ′|r = |X|r.

All attribute sets that are not in FSr are called non-free
sets. Free and non-free sets implement the minimality prun-
ing, which is already known from Tane. The right-hand-
side and key pruning has also been adapted from Tane:

Only free sets that are non-unique column combinations,
i.e., non-keys, are considered in the candidate generation.
The generation itself also uses the apriori-gen function.

In some cases, however, the Fun algorithm is able to de-
duce the cardinality of attribute combinations from its sub-
sets. This is possible if a set X is known to be a non-free set.
Then, one of the attributes of set X must be functionally
dependent on one of the direct subsets of X. This implies
that one of the direct subsets of X has the same cardinality
as the set X. This rule can be formalized as follows:

∀X /∈ FSr, ∀X ′ ⊂ X : X ′ ∈ FSr ⇒ |X|r = Max(|X ′|r)
(1)

The deduction of cardinality values allows Fun to prune
attribute combinations more aggressively than Tane: All
non-free sets can directly be pruned from the lattice, because
if the cardinality of a superset is needed later, the algorithm
can infer this cardinality from the superset’s subsets. Tane,
on the other hand, needs to process such candidate sets fur-
ther until their C+ sets become empty. Hence, the cardi-
nality deduction yields the main performance advantage of
Fun. The following example illustrated in Figure 2 explains
this pruning and deduction process in more detail.

��HHAB AC BC Level 2

A B C Level 1

Figure 2: Pruned example lattice for FUN

Consider a dataset R = {A,B,C} and the minimal func-
tional dependencies A→ B and BC → A. On level L1, Fun
discovers the functional dependency A→ B and prunes the
lattice node AB for level L2, because it is a non-free set due
to the discovered FD. For the next level L2, Fun’s candi-
date generation omits the node ABC for level L3, because
its subset AB is already pruned and it is no candidate for
the left-hand-side of an FD. To find the functional depen-
dency BC → A, Fun still needs to compare the cardinality
of BC and ABC. As the node ABC is pruned, it must be
a non-free set and its cardinality can be deduced from its
direct subsets following Equation 1.

The cardinality look-up in [15] is implemented by a method
called fastCount(). According to Equation 1, this method
calculates the cardinality of a non-free set as the maximum
cardinality of its direct subsets. In reality, one encounters
datasets for which this lookup fails, because the direct sub-
sets are sometimes also pruned so that their cardinality in-
formation has not been calculated. Therefore, the look-up
needs to be implemented recursively as shown in [14]. In
this way, the fastCount()-method collects all free set subsets
in order to find the largest subset. To enable the recursive
look-up, Fun must keep the cardinality values of all previous
levels in memory.

3.3 FD Mine
The Fd Mine algorithm has been published by Yao at

al. in two versions [21,22], which exhibit different structures
but implement the same theoretical concepts. Like Tane
and Fun, Fd Mine traverses the attribute lattice level-wise
bottom-up using stripped partitions and partition intersec-
tions to discover functional dependencies. It also builds



upon Tane’s pruning rules. In contrast to Tane and Fun,
Fd Mine uses an additional pruning rule that is based on
equivalence classes of attribute sets. Two attribute sets are
considered equivalent with respect to their implied partition
(⇔π) iff they functionally depend on each other:

∀X,Y ⊆ R : (X ⇔π Y )⇔ X → Y ∧ Y → X (2)

Whenever a level in the attribute lattice has been validated,
Fd Mine scans this level and the discovered FDs for equiv-
alent FDs. If equivalent attribute sets are found, Fd Mine
can prune all but one of each group from the lattice, because
their functional dependencies can be reconstructed accord-
ing to the following properties [21,22]:

∀W,X, Y, Z ⊆ R : (X ⇔π Y )∧XW → Z ⇒ YW → Z (3)

∀W,X, Y, Z ⊆ R : (X ⇔π Y )∧WZ → X ⇒WZ → Y (4)

When implementing Fd Mine according to its publica-
tions, we discovered three important issues that we discuss
in the following:

Non-minimal results: Fd Mine as described in [21, 22]
may output non-minimal functional dependencies due to
the novel pruning rule. Using Properties 3 and 4, the prun-
ing rule guarantees that the derived functional dependencies
hold, but it does not assert their minimality. We show this
with a small example:
Assume that X is equivalent to Y and the FD XW → Z,
which fulfills the premise of Property 3, exists. Further as-
sume that an attribute A in Y is functionally dependent on a
subset W ′ of W , which means ∃W ′ ⊆W,∃A ∈ Y : W ′ → A.
In this case, Property 3 still implies the functional depen-
dency YW → Z, but a subset of YW , namely YW \ A,
already functionally determines Z. So the deduced func-
tional dependency is not minimal. We observed many of
these cases in our experiments.

Algorithmically, Fd Mine generates the final output (and
its non-minimal FDs) from the discovered functional depen-
dencies and the set of found equivalences. Because the code
that performs this reasoning operation is not shown in the
paper, we must assume that the FDs are not minimized. In
our implementation, we did not add a minimization method,
because the minimization of FDs is equally complex than
the discovery of FDs, i.e., it corresponds to a top-down FD
discovery algorithm.

Improvable key pruning: Tane and Fun implement the
key pruning one level earlier than Fd Mine. This is perfor-
mance-wise a disadvantage, but could be intended by the
authors. Therefore, we implemented Fd Mine with the key
pruning described in [21,22].

Candidate generation: The proposed apriori-gen can-
didate generation produces incorrect results: The shown
method does not set the closure of the functional dependen-
cies to the correct value if more than two children generate
the same candidate and the test for existence of all children
is omitted. We fixed this in our implementation by setting
the correct closure and testing all children for existence as
the Tane algorithm does.

3.4 DFD
The Dfd algorithm by Abedjan et al. is the most recent

algorithm on FD discovery [1]. Like the three previously dis-
cussed algorithms, it also models the search space as a lattice

of attribute combinations. The search strategy, however, dif-
fers significantly, because Dfd traverses the attribute lattice
in a depth first random walk.

The random walk requires Dfd to model the search space,
which is a single lattice of attribute combinations in Tane,
as multiple lattices, where each lattice describes all possible
right hand sides for one left hand side. When processing
these lattices one after another, the random walk can use
what the authors call decidable paths. This means that at
any node in the lattice, Dfd knows if the next node to visit
must be smaller or larger.

The traversal of a lattice starts by choosing one node of
a set of seed nodes. Dfd then classifies this node as a de-
pendency or non-dependency, also checking for minimality/-
maximality properties. If the node is a dependency, Dfd
prunes all super-sets using the same pruning rules as Tane
and continues with a random, unvisited child node; if the
node is a non-dependency, Dfd prunes all sub-sets by also
classifying them as non-dependencies and continues with a
random, unvisited parent node. When Dfd cannot find an
unvisited node in the appropriate direction, it back-tracks
to a previous node in the path or, if the entire path has been
processed, to a new seed node to continue from there.

Due to the super- and sub-set pruning, islands of unclassi-
fied candidate nodes with no seed connection can arise in the
lattice. Dfd finds these islands in a post-processing step by
complementing the discovered maximum non-dependencies
and checking them against the discovered minimal depen-
dencies. All nodes in the complement set must be valid de-
pendencies, i.e., they must be known minimal FDs or super-
sets of them; if they are not, they are unclassified candidate
nodes and serve as new seeds.

Like all lattice-based algorithms, Dfd also uses partition
refinement techniques to check dependencies. Once calcu-
lated, stripped partitions are kept in memory for later use.
In contrast to previous algorithms, Dfd dynamically de-
allocates stripped partitions when memory is exhausted. For
this purpose, Dfd calculates usage counts for the stripped
partitions and removes less often used partitions when mem-
ory is needed. Some partitions, hence, need to be calculated
more than once.

3.5 Dep-Miner
The Dep-Miner algorithm by Lopes et al. infers all min-

imal functional dependencies from sets of attributes that
have same values in certain tuples [12]. These sets are called
agree sets and their inverse difference sets. On an abstract
level, Dep-Miner can be divided into five phases as shown
in Figure 3: In Phase 1, Dep-Miner computes the stripped
partition π̂A for each attribute in a relational instance r.
The π̂A are then used in Phase 2 to build the agree sets
ag(r). Phase 3 transforms the agree sets into maximal sets,
i.e., sets of attributes that have no superset with same val-
ues in two records of r. In Phase 4, Dep-Miner inverts the
agree sets into complement sets. From the complement sets,
the algorithm then calculates all minimal FDs in Phase 5.
Thereby it uses a level-wise search on top of the complement
sets. We describe Phases 2 to 5 in more detail.

Phase 2: An agree set ag(ti, tj) is defined pairwise between
tuples ti and tj of r: ag(ti, tj) = {A ∈ R | ti[A] = tj [A]}
where ti[A] denotes the value of tuple ti in attribute A. The
authors introduce two different procedures to calculate the
set of all agree sets ag(r) in r from the set of all stripped



Phase 5:
Calculate minimal FDs

Phase 4:
Derive complements

Phase 3:
Compute maximal sets

Phase 2:
Calculate agree sets

Phase 1:
Derive stripped partitions

Minimal FDs

Relation

Stripped partitions

Agree sets

Maximal sets

Complements of maximal sets

Figure 3: Phases of Dep-Miner

partitions π̂: The first procedure generates all pairs of tuples
that can form agree sets to compute the agree sets on them;
the second procedure uses an identifier set ec(t) to compute
the agree sets. For our implementation, we chose the second
procedure, because the authors of [12] deemed it the more
efficient approach if the partitions are large or numerous.
The identifier set ec(t) of this procedure is defined as follows:

Definition 2. Let R be a relational schema, t a tuple iden-
tifier and π̂A,i is the ith equivalence class of π̂A. Then,
ec(t) := {(A, i) |A ∈ R ∧ t ∈ π̂A,i}.

In other words, ec(t) describes the relationship between a
tuple t and all partitions containing t. The agree sets can
now be calculated by intersecting identifier sets ag(ti, tj) =
ac(ti) ∩ ac(tj). Consider the following example as an il-
lustration for this operation: Assume π̂A = {π̂A,0, π̂A,1}
and π̂B = {π̂B,0, π̂B,1} with π̂A,0 = {1, 2}, π̂A,1 = {3, 4},
π̂B,0 = {1, 4} and π̂B,1 = {2, 3}. Then, the identifier set
for tuple 1 is ec(1) = {(A, 0), (B, 0)} and for tuple 2 is
ec(2) = {(A, 0), (B, 1)}. For ag(1, 2) we calculate the in-
tersection of ec(1) and ec(2), which is {(A, 0)}. Removing
the index, we find ag(1, 2) = {A}.

Because tuples can be contained in multiple stripped par-
titions, Dep-Miner might need to compare a specific pair
of tuples (ti, tj) multiple times. To reduce the number of
redundant comparisons, π̂ is first transformed into its max-
imal representation MC = Max⊆{c ∈ π̂|π̂ ∈ r̂}, where r̂
is the set of all stripped partitions of r. The following ex-
ample shows how MC avoids redundant comparisons: Let
π̂A = {{1, 2}} and π̂B = {{1, 2, 3}}. Without computing
MC, the algorithm would need to execute the comparisons
(1, 2) for π̂A and (1, 2), (1, 3), and (2, 3) for π̂B . By com-
puting MC = {{1, 2, 3}} the necessary comparisons are re-
duced to (1, 2), (1, 3), (2, 3) so that (1, 2) is compared only
once. The original paper [12] omitted the description on
how to actually compute MC. Our solution for this task
first builds an index on top of the stripped partitions in or-
der to efficiently retrieve and compare all sets containing a
certain tuple; then it successively tests the sets of records
for sub- and superset relationships.

Phase 3: From the agree sets, Dep-Miner calculates for
each attributes A the maximal sets max(dep(r), A) where
dep(r) denotes the set of all FDs in relation r. For a specific
relational instance r, a maximal set contains all free sets that

(i) do not include the attribute A and (ii) have no subsets
in the maximal set. Hence, all agree sets in max(dep(r), A)
barely do not functionally determine A:

max(dep(r), A) := {X ⊆ R |X 9 A ∧
∀Y ⊆ R,X ⊂ Y, Y → A}

Fortunately, maximum sets are easy to compute using the
following equation:

max(dep(r), A) = Max⊆{X ∈ ag(r) |A /∈ X,X 6= ∅} (5)

Phase 4: Maximal sets describe maximal non-FDs. To de-
rive minimal FDs, Dep-Miner needs to compute the com-
plement cmax(dep(r), A) of the maximal sets max(dep(r), A)
for each A ∈ R. This can be done by calculating R\X for
all X ∈ max(dep(r), A).

Phase 5: In the last phase, Dep-Miner generates the left
hand sides for all minimal FDs with right hand side A from
cmax(dep(r), A) for each attribute A ∈ R. To this end,
the algorithm searches level-wise through the complement
sets in cmax(dep(r), A): The first level is initialized with
all unary attribute sets {B} ∈ cmax(dep(r), A). Then the
algorithm moves upwards level by level to infer the minimal
FDs. On level Li, a functional dependency X → A for a
specific X ∈ Li holds, if ∀Y ∈ cmax(dep(r), A) : X∩Y 6= ∅ is
true. Before generating the next level, Dep-Miner removes
all attribute sets X from Li that yielded valid left hand
sides to ensure that only minimal functional dependencies
are found. Then, the generation of level Li+1 from level
Li uses an adapted version of the apriori-gen algorithm [3].
Dep-Miner terminates when the generation of the next level
results in no candidates for each A ∈ R.

3.6 FastFDs
The FastFDs algorithm was introduced by Wyss et al.

in [20] as an improvement of Dep-Miner. Therefore, it
also builds upon agree sets to derive functional dependen-
cies. After calculating these agree sets, FastFDs follows
a different strategy to derive minimal functional dependen-
cies: Because the maximization of agree sets in Phase 3
of Dep-Miner is an expensive operation, FastFDs instead
calculates all difference sets as Dr := {R\X|X ∈ ag(r)}
directly on the agree sets ag(r). In Phase 4, the algo-
rithm then calculates the difference sets of r modulo A as
DAr := {D − {A}|D ∈ Dr ∧ A ∈ D}. The DAr sets are
FastFDs’ equivalent to complement sets cmax(dep(r), A)
used in Dep-Miner and also serve the derivation of mini-
mal functional dependencies. With the DAr sets, FastFDs
can reduce the problem of finding all minimal FDs to the
problem of finding all minimal covers over DAr . A minimal
cover is defined as follows:

Definition 3. Let P(R) be the power set of the relation R
and X ⊆ P(R). The attribute set X ⊆ R is called a cover
for X iff ∀Y ∈ X , Y ∩X 6= ∅. Furthermore, X is a minimal
cover for X iff X covers X and @Z ⊂ X such that Z is a
cover for X .

To retrieve FDs from minimal covers, FastFDs uses the
following Lemma 3.1:

Lemma 3.1. Let X ⊆ R and A /∈ X. Then X → A iff X
covers DAr .



To find the minimal covers for all DAr , FastFDs con-
structs a search tree for each possible right hand side A ∈ R.
Figure 4 shows an example of such a search tree. Each node
of the tree stores both the difference sets that are not already
covered and the current attribute ordering >curr. The at-
tribute ordering orders all attributes contained in DAr by the
number of difference sets that they cover. Attributes that
cover the same number of difference sets are ordered lexi-
cographically. For the calculation of minimal covers, Fast-
FDs traverses the nodes of the tree using a depth-first search
strategy. A greedy heuristic that always chooses the highest
ordered attribute in >curr thereby decides which attribute
and therefore which branch of the tree should be investigated
next. If the search arrives at a node for which >curr = ∅
but that still holds uncovered difference sets, the set of cho-
sen attributes X within this branch is not a cover for DAr
and, hence, X → A does not hold; on the other hand, if
FastFDs reaches a node that contains no more difference
sets to cover, the set of attributes X within this branch is a
cover for DAr . Because of Lemma 3.1, the functional depen-
dency X → A then holds. However, FastFDs still needs
to ensure that this dependency is minimal by investigating
its left hand side. The algorithm has, finally, discovered all
minimal functional dependencies when the search tree has
been traversed for each attribute A ∈ R.

difference sets remaining: {BC,BD,CF,DE}
current ordering: [B > C > D > E > F]

{CF,DE}
[C > D > E > F]

{BD,DE}
[D > E]

...

{BC,BD,DE}
[ ]

B C F

{DE}
[D > E]

{CF}
[F]

{CF}
[F]

{DE}
[ ]

{}
[ ]

{BD}
[ ]

C D E F D E

{}
[E]

{}
[ ]

{}
[ ]

{}
[ ]

D E F F

Figure 4: Example searchtree for attribute A

3.7 FDEP
In contrast to previously described algorithms, Fdep by

Flach and Savnik [6] follows an approach that is neither
based on candidate generation nor on attribute set analy-
sis. Instead, the algorithm successively specializes a set of
minimal FDs (or maximal non-FDs) by pair-wise compar-
ing all tuples in a given relation. The authors propose three
variants of Fdep: top-down (specializing minimal FDs), bi-
directional (specializing both FDs and non-FDs) and bottom-
up (specializing maximal non-FDs). Our implementation is
based on the bottom-up variant, because it exhibited the
best performance in [6]. We referred to the reference imple-
mentation at [5] for algorithmic parts that the pseudo-code
in [6] does not describe.

The proposed bottom-up Fdep consists of two steps: neg-
ative cover construction and negative cover inversion. The
negative cover is a set of all non-FDs that have been found
in a relational instance r. When calculated, its inverse, the

positive cover, is the set of all minimal FDs. In the following,
we first describe the FD-tree data structure that efficiently
stores negative or positive covers. Then, we describe the two
steps of Fdep.

FD-Tree: An FD-tree is an extended prefix tree that stores
functional dependencies X → A. The root node represents
the empty set and each node in the tree represents an at-
tribute. Each path in the tree describes a left hand side of
a dependency X. All nodes of such a path are labeled with
the dependent attribute A. The last node of each path de-
noting a dependency holds an extra flag indicating that A is
a leaf and the path X for the FD X → A ends here. Using
a depth-first search, Fdep can easily look up specializations
(larger X) and generalizations (shorter X) of FDs X → A
in the FD-tree.

Negative cover construction: Fdep’s first step builds
the negative cover, which contains all dependencies that can-
not hold in a relational instance r. The negative cover is
initialized as an empty FD-tree. Then, Fdep compares all
pairs of tuples ti, tj ∈ r. Each comparison extracts those
attribute sets X that have equal values in ti and tj . Hence,
all dependencies X → A with A ∈ R\X are not valid. Fdep
simply adds all these non-FDs to the negative cover.
In the end, the negative cover contains all invalid FDs and
most of these non-FDs are not maximal. The next step does
not require the negative cover to contain only maximal FDs,
but Flach and Savnik propose to filter all generalizations of
an FD when inserting a specialization for performance rea-
sons. The reference implementation performs the filtering of
generalizations as a post-processing after the negative cover
construction. Because the post-filtering has shown a better
performance in our implementation, we use this strategy for
the evaluation in Section 4.

Negative cover inversion: Fdep’s second step calculates
the positive cover from the negative cover. The positive
cover is the inverse of the negative cover calculated as fol-
lows: First, Fdep initializes a new FD-tree containing the
most general dependencies ∅ → A for all A ∈ R. Then, the
algorithm incrementally specializes this FD-tree with the
non-FDs of the negative cover: For each non-FD X → A ob-
tained via recursive depth-first search in the negative cover,
Fdep generates all direct specializations XB → A with
B ∈ R \ X and B 6= A, which can be valid FDs. Then
the algorithm removes all generalizations of XB → A from
the positive cover (these are violated by X → A) and adds
XB → A to the positive cover. After transferring all non-
FD specializations into the positive cover, it contains all and
only all minimal non-trivial FDs of r.

4. EVALUATION
In this section we analyze and compare the seven previ-

ously described algorithms. We first describe our experimen-
tal setup. Then we evaluate the scalability of the FD dis-
covery algorithms regarding the number of columns and the
number of rows in the input dataset. Afterwards, we mea-
sure the algorithms’ execution times on various real-world
datasets. Finally, we analyze memory consumption on se-
lected datasets and derive algorithm recommendations for
specific situations. Our experiments largely confirm the re-
sults on the individual algorithms, but no previous work per-



formed such a comprehensive evaluation and usually com-
pares the performance to only the Tane algorithm.

4.1 Experimental setup
Metanome: We implemented all algorithms for our Meta-
nome data profiling framework (www.metanome.de), which
defines standard interfaces for different kinds of data profil-
ing algorithms. All common tasks, such as input parsing, re-
sults formatting, performance measuring, or algorithm para-
metrization, are standardized by the framework and decou-
pled from the algorithm. In this way, we can guarantee
a uniform test environment for all seven implementations.
Our implementations, the Metanome tool, additional doc-
umentation and all datasets used in the experiments are
available online on our repeatability page2.

Datasets: We evaluate all algorithms on a synthetic and
16 real-world datasets (see Table 1 in Section 4.4 for an
overview). Most of the datasets have also been used in
previous evaluations on FD discovery. They cover a wide
range of topics and feature different structural properties:
The fd-reduced-30 dataset is the only synthetic dataset in
our experiments. It has been generated with the dbtesma
data generator, which can be found on our repeatability
page. The plista [9] dataset on web log data and the flight3

dataset on flight route data are excerpts from data streams.
Both datasets comprise comparatively many columns and
any number of rows. The uniprot4 dataset is the Univer-
sal Protein Resource database containing protein sequences
with many attributes and the ncvoter5 dataset is the North
Carolina’s Voter Registration database listing public voter
statistics. All further datasets originate from the UCI ma-
chine learning repository [18] and have rather small numbers
of rows and columns. The datasets abalone, horse, balance-
scale, breast-cancer, echocardiogram, and hepatitis all con-
tain anonymous, clinical data about patients and diseases;
bridges contains data about bridges in Pittsburgh, iris con-
tains information about iris plants, chess contains end game
chess situations, and nursery contains background informa-
tion about nursery school applications; the letter dataset
comprises information about the English alphabet and the
adult dataset aggregates census data.

Null values: Because most experiments use real-world data,
null values (⊥) occur. Given two tuples t1 and t2 both with
a null value in attribute A, i.e., t1[A] = ⊥ and t2[A] = ⊥,
then two semantics are possible: t1[A] = t2[A] evaluates to
false or to true. Because the two semantics lead to dif-
ferent functional dependencies, our implementations of the
algorithms support both settings. For our evaluation, how-
ever, we chose the null equals null semantics: First, we
believe it to be more intuitive, because a completely empty
column, for instance, should not functionally determine all
other columns; second, null equals null corresponds to the
SQL semantics; third, this semantic was also chosen by the
authors of related work so that a comparable evaluation
must be based on null equals null. Performance-wise, how-
ever, the null equals null semantic causes longer runtimes

2
https://hpi.de/naumann/projects/repeatability

3
www.transtats.bts.gov

4
www.uniprot.org

5
www.ncsbe.gov/ncsbe/data-statistics

than its counterpart, because FDs become larger on average
requiring more attributes to determine one another.

Constraints: The execution time of an algorithm includes
the time needed to load and parse the input data. It also
includes the time needed to parse the output into a uniform
format, but it does not include the time for writing results
to disk. In this way, experiments with very large result
sets can simply count the FDs instead of keeping them in
memory without influencing the actual runtime of the algo-
rithm. For precision, we repeat each experiment four times
and only report on the shortest execution time in our eval-
uation; these times show the best possible performance for
each algorithm. Each experiment also limits the maximum
execution time to four hours and the maximum memory
consumption to 100 GB. The former is enforced by external
termination and the latter by the size of the JVM.

Hardware: All experiments are executed on a Dell Pow-
erEdge R620 running CentOS 6.4. The test machine con-
tains two Intel Xeon E5-2650 (2.00 GHz, Octa-Core) proces-
sors, 128 GB DDR3-1600 RAM and a 4 TB raid5 storage.
Note that all algorithms are single threaded and use only
one of the available processor cores. As Java environment,
we used OpenJDK 64-Bit Server VM 1.7.0 25.

4.2 Row scalability experiments
In our first experiment, we evaluate the algorithms’ scal-

ability with the number of rows in the input dataset. We
use the ncvoter dataset with all 19 columns and the uniprot
dataset with its first 30 columns (more columns would make
some algorithms inapplicable as we show in Section 4.3).
The runtime measurements of this experiment are depicted
in Figure 5. Fd Mine does not show up in the two charts,
because the first two measurement points already exceed the
main memory limit of 100 GB. This is due to the fact that
Fd Mine reports a huge number of non-minimal functional
dependencies, e.g., around 1.1 million functional dependen-
cies on the ncvoter dataset where only 758 minimal func-
tional dependencies exist.

The runtimes of Tane, Fun, and Dfd scale almost lin-
early with the number of rows. This is because the three
lattice traversal algorithms validate FD candidates using po-
sition list indexes (PLIs) and the costs for PLI intersections
grow linearly with the number of rows. Thereby, Fun per-
forms worse than Tane due to its recursive cardinality look-
ups, which constitute an overhead on these datasets. Dfd,
on the contrary, scales better than Tane with the number of
rows, because it executes far fewer PLI intersects; the over-
head for random walk and hole-filling still causes Dfd to
perform worse than Tane for small numbers of rows. Tane
and Fun eventually run into the memory limit of 100 GB,
because they have to maintain a huge amount PLIs that
outgrows the memory capacity.

The runtimes of Dep-Miner, FastFDs, and Fdep scale
quadratically with the number of rows, because the three
algorithms compare all records pair-wise. We also see that
the runtimes of Dep-Miner and FastFDs differ greatly for
small numbers of rows, because processing difference sets is
more efficient than processing agree sets if the agree sets
are created from only a few rows. For large numbers of
rows, however, the performance difference becomes negligi-
ble. Still, Fdep performs better than both Dep-Miner and
FastFDs.



Figure 5: Row scalability on ncvoter and uniprot

In summary, lattice traversal algorithms perform best on
datasets with many rows; difference- and agree-set algo-
rithms as well as dependency induction algorithms perform
best on datasets with few rows. The different across the two
datasets are due to the different numbers of columns.

4.3 Column scalability experiments
Next, we evaluate the algorithms’ scalability with the

number of columns. For this experiment, we use the plista
and uniprot datasets, because both comprise many columns.
The columns are added by their order in the datasets’ schema
and the number of rows is fixed to 1000. Figure 6 shows the
results of the experiment.

The measurements show that all algorithms scale expo-
nentially with the number of columns: For lattice traversal
algorithms the search space of candidate sets grows expo-
nentially, for difference- and agree-set algorithms the set of
attribute sets grows exponentially, and for dependency in-
duction algorithms the intermediate results grow exponen-
tially. All these effects are a consequence of the exponen-
tially growing result set of minimal FDs.

Fdep can handle high numbers of columns by far best,
because the number of columns influences only the costs
of transforming the negative cover into the positive cover.
Thereby, the transformation of non-FDs into FDs is a cheap
operation compared to PLI intersections, which are expo-
nentially often performed in lattice traversal algorithms.

We also see that Fun, Fd Mine, and Dfd are all better
than Tane on small numbers of columns due to their spe-
cial pruning strategies. However, these strategies do not pay
off on larger numbers of columns, because of individual rea-
sons: Fun’s cardinality look-up is a recursive tree traversal
that scales exponentially with the size of the search space; it
is hence a huge disadvantage when used on many columns.
Fd Mine’s reasoning on equivalent attribute sets requires

Figure 6: Column scalability on uniprot and plista

the algorithm to iterate intermediate results that grow ex-
ponentially; therefore, this pruning rule introduces a high
overhead when the number of columns grows. Dfd prunes
the search space upwards and downwards, which generates
islands of unvisited candidate nodes; as the size of these is-
lands grows exponentially with the number of columns and
filling candidate islands is the algorithm’s most expensive
part, Dfd becomes very slow for high column numbers.

Overall, dependency induction algorithms perform best on
datasets with many columns; lattice traversal algorithms, on
the other hand, can be faster if the number of columns is low;
difference- and agree-set algorithms lie performance-wise in
between.

4.4 Experiments on different datasets
To see how the seven algorithms perform on different in-

puts, this section evaluates them on 17 datasets. Most of
the datasets in this experiment have also been used in the
experiments of the algorithms’ individual publications. By
using same datasets, we were able to compare our results to
previous measurements and confirm them. Note that very
long datasets have been shortened to 1,000 rows, which still
constitutes a challenge for most algorithms.

Table 1 lists the different datasets and the algorithms’ ex-
ecution times needed for finding all minimal FDs. The table
also lists additional information for each dataset6. We now
comment on the performance of the individual algorithms.

Tane: The Tane algorithm follows a strict bottom-up level-
wise search strategy and only implements reliable pruning
rules. This makes the algorithm slower than most other

6The FDs-column counts only minimal FDs and, following most
related work, uses the empty set notation ∅ → A for attributes A
that contain only a single unique value and are thus determined
by each other attribute.



Dataset Columns Rows Size FDs Tane Fun Fd Mine Dfd Dep-Miner FastFDs Fdep
[#] [#] [KB] [#] [7] [14] [21] [1] [12] [20] [6]

iris 5 150 5 4 1.1 0.1 0.2 0.2 0.2 0.2 0.1
balance-scale 5 625 7 1 1.2 0.1 0.2 0.3 0.3 0.3 0.2
chess 7 28,056 519 1 2.9 1.1 3.8 1.0 174.6 164.2 125.5
abalone 9 4,177 187 137 2.1 0.6 1.8 1.1 3.0 2.9 3.8
nursery 9 12,960 1,024 1 4.1 1.8 7.1 0.9 121.2 118.9 46.8
breast-cancer 11 699 20 46 2.3 0.6 2.2 0.8 1.1 1.1 0.5
bridges 13 108 6 142 2.2 0.6 4.2 0.9 0.5 0.6 0.2
echocardiogram 13 132 6 538 1.6 0.4 69.9 1.2 0.5 0.5 0.2
adult 14 48,842 3,528 78 67.4 111.6 531.5 5.9 6039.2 6033.8 860.2
letter 17 20,000 695 61 260.0 529.0 7204.8 6.0 1090.0 1015.5 291.3
ncvoter 19 1,000 151 758 4.3 4.0 ML 5.1 11.4 1.9 1.1
hepatitis 20 155 8 8,250 12.2 175.9 ML 326.7 5576.5 9.5 0.8
horse 27 368 25 128,726 457.0 TL ML TL TL 385.8 7.2
fd-reduced-30 30 250,000 69,581 89,571 41.1 77.7 ML TL 377.2 382.4 TL
plista 63 1,000 568 178,152 ML ML ML TL TL TL 26.9
flight 109 1,000 575 982,631 ML ML ML TL TL TL 216.5
uniprot 223 1,000 2,439 unknown ML ML ML TL TL TL ML

Results larger than 1,000 FDs are only counted TL: time limit of 4 hours exceeded ML: memory limit of 100GB exceeded

Table 1: Runtimes in seconds for several real-world datasets

algorithms on tiny datasets with fewer than 10 columns or
fewer than 1000 rows. Because it avoids fancy but costly
pruning methods, Tane can process most larger datasets
in the experiment. Tane performs especially well on the
fd-reduced-30 dataset, because almost all minimal FDs in
this dataset can be found on the third lattice level, which
greatly limits the search space for the level-wise traversal.
However, if the search space becomes too large, i.e., more
than 40 columns, Tane exceeds the memory limit.

Fun: The Fun algorithm is clearly faster than Tane on
very small datasets, because of its recursive cardinality look-
up. As in previous experiments, this look-up becomes a
disadvantage on datasets with many columns: the search
space for child cardinalities grows exponentially with each
additional lattice level; the partition intersections that the
look-ups should prevent, however, become ever cheaper on
higher lattice levels, because the partitions become smaller.

Fd Mine: The Fd Mine algorithm finds many non-mini-
mal FDs, which is a disadvantage for two reasons: First,
the result set quickly outgrows memory capacity. Second,
the reasoning that is performed on these non-minimal FDs
becomes increasingly time consuming outweighing its gain.
Therefore, Fd Mine performs worst in our experiments.

DFD: The Dfd algorithm is extremely powerful when the
combination of up-wards and down-wards pruning removes
many candidates without producing too many islands of
unchecked nodes. In these cases, Dfd can be orders of
magnitude faster than all other algorithms; otherwise, the
algorithm “starves” in finding unchecked FD candidates.
As we showed earlier, the overhead of finding and classi-
fying island nodes scales exponentially with the number of
columns. Hence, Dfd performs well for datasets with only
few columns (< 20), but becomes inapplicable for datasets
with many columns (> 30). Since Dfd is a non-deterministic
algorithm, its random walk can find a lattice path with opti-
mal pruning, but it can also choose a path that creates many
islands. The runtimes of Dfd, however, do not vary more
than those of other algorithms, because the number of island
nodes is almost constant throughout repeated runs. The ex-
periments also show that the random walk in combination
with the PLI aging prevents Dfd from memory limits.

Dep-Miner: The Dep-Miner algorithm performs well on
datasets with few rows. But it is also sensitive to the number
of columns, as the maximization of agree sets can become
very expensive. This is apparent for the hepatitis dataset.

FastFDs: The FastFDs algorithm improves Dep-Miner
by minimizing difference sets instead of maximizing agree
sets. On most datasets, this optimization has no effect, but
if it has an effect like on the hepatitis and horse dataset,
then the improvement is significant.

Fdep: The Fdep algorithm is the overall best algorithm in
this experiment, because almost all datasets have only few
rows (≤ 1, 000). On datasets with more rows, i.e., 250,000
rows in fd-reduced-30, Fdep runs into time limits, because
it tries to compare all records pair-wise. But Fdep scales
so well with the number of columns that it can also process
more than 100 columns in a few minutes. It still exceeds
the memory limit on uniprot ’s 223 columns, because the
resulting set of FDs simply does not fit into 100 GB main
memory any more.

4.5 Memory Experiments
To decide which algorithm should be used on which data-

set, one must not only consider the algorithms’ runtimes
but also their memory consumptions. Therefore, we now
evaluate the memory footprint of each algorithms on three
selected datasets. Our experiment limits the Java Virtual
Machine to certain amounts of memory and tests the seven
algorithms on each dataset. The memory limits have been
chosen from typical real-world memory limits. In Table 2,
we report on whether the memory was sufficient or not and
what runtimes were achieved. For each algorithm, we list
only the execution time for the first memory limit that was
sufficient. These times are sometimes a bit higher than
previously measured runtimes, because having less memory
triggers the garbage collector more frequently.

Tane: Tane requires 8 GB of main memory for the adult
dataset and about 32 GB for the letter dataset. This is a
remarkable amount of memory for datasets that are only a
few megabytes small. The reason is the level-wise generation
of the attribute lattice: Each next level can become a factor
larger than the previous one and the algorithm always tries
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Dep-Miner TL TL TL TL TL TL
FastFDs 411
Fdep 8

TL: time limit of 4 hours exceeded
ML: memory limit exceeded

Table 2: Memory experiment (runtimes in seconds)

to pre-build all PLIs for the next level. To prevent memory
overflows, PLIs could be written to disk when memory is
exhausted. In this way, Tane could turn memory limits
into longer execution times.

Fun: In contrast to Tane, Fun needs to keep all cardinality
counts from already finished lattice levels in memory, be-
cause the recursive cardinality look-ups might require them
later on. So in the worst case, namely if most PLIs are ac-
tually needed, the memory consumption for Fun becomes a
bit higher than the memory consumption of Tane.

Fd Mine: Fd Mine would have a similar memory con-
sumption than Tane if it would not produce so many non-
minimal results. These huge result sets eat up all memory.

DFD: Dfd has a better memory performance than the other
lattice traversal algorithms, because it prunes much more
aggressively and, hence, creates much fewer PLIs. It also
monitors its memory consumption to free least recently used
PLIs from its internal PLI store. This basically trades the
memory limit on the horse dataset for a time limit.

Dep-Miner, FastFDs and Fdep: The three algorithms
Dep-Miner, FastFDs and Fdep have much lower memory
requirements than lattice-based algorithms, because they
operate directly on the data and store intermediate results
in memory efficient tree structures. Fdep’s FD-tree is espe-
cially memory efficient, because its size directly scales with
the size of the result set.

4.6 Extrapolation of experimental results
Our experiments have shown that all algorithms have spe-

cific advantages and disadvantages: Lattice traversal algo-
rithms scale well with the number of rows, but their perfor-
mance decreases for a large number of columns; difference-
and agree-set algorithms as well as dependency induction
algorithms scale well with an increasing number of columns,
but have performance issues with many rows. For these in-
sights, each experiment evaluated the algorithms on only
a small cross section of parameters. In the following, we

extrapolate previous measurements in order to predict the
fastest algorithm for any input dataset.

For this extrapolation, we assume that main memory is
arbitrary large. This gives us the best performance for
each algorithm. If the memory is not sufficient, the algo-
rithms require memory management techniques that either
write intermediate data structures (partially) to disk or op-
timistically delete and later rebuild them if necessary. These
techniques would shift the performance to the disadvantage
of lattice based algorithm, because they hit memory limits
much earlier than the other algorithms. We do not ana-
lyze this dimension here, because no FD algorithm besides
Dfd has actually tried memory management techniques and
extending the algorithms is not in the focus of this paper.

For any combination of column and row counts, we want
to give a prediction for the fastest algorithm. From our ex-
periments, we already know the fastest algorithms for some
of these combinations, e.g., the bold runtimes in Table 1.
The scalability experiments have further shown the best al-
gorithms for longer ranges of row or column numbers. Fig-
ure 7 places all these observations into a matrix. There are
points for Tane, Fun, Dfd, and Fdep. All other algorithms
never performed best. We already see that all points from
Fun lie in the very lower left corner of the chart and are
superimposed by points from Fdep. Since Fun performs
only sporadically best and only for such a small parameter
setting, we ignore these points in our extrapolation.

DFD           Tane             FDep 

Figure 7: Fastest algorithm with respect to column
and row counts when memory is arbitrary large.

With the measurement points of the best algorithms set,
we now select those points for which Dfd and Tane per-
form equally well; then we calculate a regression through
these points. Afterwards, we do the same for Tane and
Fdep. These two regression lines border areas in which one
algorithm is expected to perform best.

Note that the border line between Tane and Fdep is cal-
culated with only small datasets. It is therefore less precise
than the line between Dfd and Tane. We tried to add
some more measurements at 40 and 60 columns using the
plista and uniprot datasets, but Tane always exceeded our
memory limit of 100 GB (it actually exceeded 128 GB). The
exact border lines may vary slightly anyways depending on
the distribution of FDs in the input dataset, because this
also influences the algorithms’ performance as shown for the
fd-reduced dataset in Section 4.4.



When using the chart in Figure 7 as a decision matrix to
find the fastest algorithm, one must consider that an algo-
rithm might be the fastest algorithm for a specific input, but
it may still be infeasible to actually run this algorithm on
that input. For instance, Fdep is the best algorithm for a
dataset with 100 columns and 300,000 rows, but it will still
run for days or longer; Tane is the best algorithm for 40
columns and 100,000 rows, but one probably needs 256 GB
main memory or more.

5. CONCLUSION
In this paper, we discussed the seven most important FD-

discovery algorithms in detail and showed their individual
strengths and weaknesses. We provided relevant technical
details when missing in the algorithms’ original publications.

Our evaluation constitutes the first qualitative compari-
son of all FD-discovery algorithms and analyzes both exe-
cution times and memory consumptions. With the extrapo-
lation of our evaluation results, we provide the reader with
a tool to choose the fastest algorithm for any given dataset.

In summary, our experiments have shown that FD discov-
ery is still an open research field: None of the state-of-the-
art algorithms in our experiments scales to datasets with
hundreds of columns or millions of rows. Given a dataset
with 100 columns and 1 million rows, which is a reasonable
size for a table, Dfd, Dep-Miner, FastFDs, and Fdep will
starve in runtime, whereas Tane, Fun, and Fd Mine will
use up any available memory. This observation indicates
potential for future research.

Furthermore, we discovered very large numbers of FDs in
many datasets. For a user to make sense of such large result
sets, further techniques are needed, such as ranking FDs by
interestingness or visualizing attributes and their FDs. This
interpretation of dependencies is a further important topic
for future research for all data profiling approaches.
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