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Abstract. Discovering functional dependencies (FDs) from an existing
relation instance is an important technique in data mining and database
design. To date, even the most e�cient solutions are exponential in the
number of attributes of the relation (n), even when the size of the output
is not exponential in n. Lopes et al. developed an algorithm, Dep-Miner,
that works well for large n on randomly-generated integer-valued relation
instances [LPL 00a]. Dep-Miner �rst reduces the FD discovery problem
to that of �nding minimal covers for hypergraphs, then employs a level-
wise search strategy to determine these minimal covers. Our algorithm,
FastFDs, instead employs a depth-�rst, heuristic driven search strategy
for generating minimal covers of hypergraphs. This type of search is
commonly used to solve search problems in Arti�cial Intelligence (AI)
[RN 95]. Our experimental results indicate that the levelwise strategy
that is the hallmark of many successful data mining algorithms is in
fact signi�cantly surpassed by the depth-�rst, heuristic driven strategy
FastFDs employs, due to the inherent space e�ciency of the search. Fur-
thermore, we revisit the comparison between Dep-Miner and Tane, in-
cluding FastFDs. We report several tests on distinct benchmark rela-
tion instances, comparing the Dep-Miner and FastFDs hypergraph ap-
proaches to Tane's partitioning approach for mining FDs from a relation
instance. At the end of the paper (appendix A) we provide experimental
data comparing FastFDs with a third algorithm, fdep [FS 99].

1 Introduction

Functional dependencies (FDs) are a well-studied aspect of relational database
theory [AHV 95]. Originally, the study of FDs was motivated by the fact that
they could be used to express constraints which hold on a relation schema in-
dependently of any particular instance of the schema (for example, a business
rule). Recently, a new research direction for FDs has emerged: the dependency
discovery problem.1 Given a relation schema, R, and an instance of the schema,
r, determine all FDs which hold over r. Our paper addresses this problem.

1 Like [FS 99], we do not use the term \dependency inference" to avoid confusion with
the problem of inferring the dependencies implied by a given set of dependencies
(which is not the problem of interest in this paper).



We develop an algorithm, FastFDs, for �nding the canonical cover of the set
of FDs (Fr) of a given relation instance (r). FastFDs is based on a result in
[MR 87,MR 94], showing that �nding Fr is equivalent to �nding the minimal
covers of each of a set of hypergraphs (one for each attribute) constructed from
the di�erence sets of the relation instance.2 FastFDs carries out the following
steps for each attribute, A 2 R: (1) construct the di�erence set hypergraph, DAr ,
(2) compute the set of minimal covers of DAr using depth-�rst, heuristic-driven
search. We have implemented FastFDs and performance tested it on several
distinct classes of benchmark databases (x1.3).

1.1 Motivations

Motivations for addressing the dependency discovery problem arise in several
areas of endeavor: (a) data mining, (b) database archiving, and (c) data ware-
housing and OLAP.

Data mining concerns the semi-automated �nding of interesting patterns in
large collections of data to guide future decision making [RG 00]. Certainly the
FD discovery problem meets this description. Paraphrasing from [HKP+ 99],
consider a database of chemical compounds and their outcomes on a collection of
bioassays. The discovery that an important property (such as carcinogenicity) of
a compound depends functionally on some structural attributes can be extremely
valuable.

Given a large database to be archived, discovered FDs can be used to save
storage space. The database can be normalized with respect to these FDs and
the normalized database stored alongside the FDs. The normalized database will
likely be signi�cantly smaller than the original database.

Data warehouses are typically much larger than other kinds of databases
and are typically accessed and analyzed by OLAP query tools [RG 00]. Data
warehouses and OLAP tools are based on the data cube multidimensional data
model ([HK 2001] section 2.2). Discovered FDs can provide valuable semantic
information which can be used to save time in the evaluation of OLAP operations
on data cubes (for example, a drill-down).

Example 1. Consider the following 4D data cube representing the minimum dis-
tance traveled to work by the residents of the state of Indiana. The dimensions
are occupation (for example, executive, administrative, and managerial occu-
pations; sales occupations; etc.), means (train, bus, automobile, etc.), city, and
age. The measure is minimum number of miles traveled. Thus, a cell (sales oc-
cupations, automobile, Indianapolis, 18-25 ) containing 15 indicates that people
aged 18-25 in sales occupations in Indianapolis who travel by automobile to
work, at a minimum, travel 15 miles.

Assume that occupation, city ! means is an FD in the current snapshot
of the cube. Further assume that the 2D cuboid, occupation, city, is also
maintained in the warehouse due to some previous request. Suppose a drill-
down query on occupation, city, and means is issued (i.e. �nd the minimum
2 These were originally introduced in [MR 87] and termed necessary sets.
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distance traveled by occupation, city, and means). The FD above implies that
no aggregations need be carried out (the measures from the 2D cuboid need not
be changed); this may result in signi�cant savings of time. ut

As an aside, we point out the following application of the dependency dis-
covery problem in database design. Mannila et al. developed a database design
and analysis tool called \Design-By-Example" [KMR+ 92] which makes use of
discovered FDs. Their tool, among other things, allows a database designer to
see all of the FDs which hold on an example table of a database. The designer
can then modify the database schema if necessary, for example to normalize with
respect to some of these FDs. The schema and instance, in this application, are
quite small. As a result, less e�cient (albeit arguably simpler) algorithms for
�nding FDs can be used than FastFDs.

1.2 Related Work

The �rst examination of the dependency discovery problem appeared in [MR 87]
(full version [MR 94]). Algorithms were presented for �nding a cover for the
set of discovered dependencies. Their worst case complexity is exponential in
R (although their behavior in practice was not investigated in [MR 94]). This
exponential complexity was shown to be input optimal in the sense that the
number of dependencies in any cover can be exponentially larger than the size of
the relation instance. Thus, we cannot hope to �nd an input e�cient algorithm
for solving the problem in the worst case. However, output e�cient algorithms
may still be found.

Since [MR 87], research has gone into developing algorithms which behave
well in practice: [FS 99,LPL 00a,HKP+ 99], among others. Several of these al-
gorithms have been implemented and performance tested on both benchmark
and synthetic data. Three recent algorithms of interest are Tane [HKP+ 99],
Dep-Miner [LPL 00a,LPL 00b], and fdep [FS 99]. Both Tane and Dep-Miner
search the attribute lattice in a levelwise fashion.3 FastFDs di�ers from Tane

in two respects: (1) Tane is not based on the hypergraph approach, and (2)
Tane searches the subset lattice levelwisely, whereas FastFDs uses a depth-�rst
search strategy. FastFDs di�ers from Dep-Miner only in that Dep-Miner employs
a levelwise search to �nd hypergraph covers, whereas FastFDs uses a depth-�rst
search strategy.

Two versions of fdep are implemented and tested in [FS 99]: bottom-up and
bi-directional. The bottom-up version is shown to be superior so we do not
consider the bi-directional version (henceforth, fdep, refers to the bottom-up
version). Fdep �rst computes the maximal negative cover of the dependencies
then iterates through this cover, re�ning the cover of the FDs at each iteration.4

3 The computation of discovered dependencies levelwisely is an instance of the gener-
alized algorithm for data mining given in [MT 97]. Another example instance is the
a priori algorithm for �nding association rules [AMS+ 94].

4 The maximal negative cover of r is the set of all X ! A such that r 6� X ! A but,
for all strict supersets X̂ ) X, r � X̂ ! A.
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After one pass through the negative cover the minimal cover is computed.
Note that the relation instance is only used to compute the \auxiliary informa-
tion" contained in the negative cover and is not used to guide the search for
Fr directly. This is similar to FastFDs and Dep-Miner, as both use the auxil-
iary information contained in the di�erence sets, so the search is similarly not
guided by the relation instance itself. However, fdep does not employ a level-
wise or a depth-�rst search of the subset lattice as FastFDs and Dep-Miner do.
Rather, fdep utilizes techniques for learning general logical descriptions within
a hypotheses space; examples of methods within this general framework that
are akin to the fdep method are version spaces and generalization/specialization
hierarchies [RN 95].

1.3 Purpose and Primary Contributions

The purposes of this paper are to introduce a novel method (FastFDs) for ad-
dressing the dependency discovery problem and to report the �ndings of perfor-
mance testing of the three algorithms Dep-Miner,Tane, and FastFDs. We report
the relative performance of fdep in appendix A. Our two primary contributions
are as follows.

1. We introduce the algorithm FastFDs, which uses heuristic-driven, depth-�rst
search to compute minimal FDs from a relation instance.

2. We report the results of several tests of the programs Dep-Miner, Tane, and
FastFDs on three distinct classes of relation instances:

(a) Random integer-valued instances of varying correlation factors,
(b) random Bernoulli relation instances, and
(c) existing \real-life" relations available online at the Machine Learning

(ML) Repository site [MM 96].

Our experiments reveal that FastFDs is competitive for all of these relation
instance classes when compared to Tane and Dep-Miner. Both FastFDs and
Dep-Miner compute di�erence sets using the same code. Omitting this compu-
tation, FastFDs is signi�cantly faster than Dep-Miner on the three classes of
instances (tables 3, 4, 6). Thus, the heuristic-driven, depth-�rst search appears
inherently more e�cient than the levelwise calculation of covers of di�erence
sets.

2 The Algorithm FastFDs

In this section, we describe the algorithm FastFDs. In x2.1, we present de�nitions
and results establishing a connection between minimal hypergraph covers and
the canonical cover of the set of FDs of r, Fr. In x2.2, we describe a method,
genDi�Sets, for computing the di�erence sets based on [LPL 00a]. In x2.3, we
present an algorithm for �nding minimal covers of the di�erence sets, �ndCovers,
and indicate how FastFDs uses �ndCovers to compute Fr.
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2.1 De�nitions and Basic Results

Let R be a relation schema and r an instance of R. Let n = jRj and m = jrj. In
what follows, we will use n and jRj, m and jrj interchangeably as necessary, to
facilitate ease of reading.

De�nition 1. Let X;Y � R.

1. X ! Y is a functional dependency (FD) over r i� for all tuples t1; t2 2 r,
t1[X ] = t2[X ]) t1[Y ] = t2[Y ]. We write r � X ! Y .

2. X ! Y is trivial i� Y � X.
3. X ! Y is minimal i� (i) r � X ! Y and (ii) Z ( X implies r 6� Z ! Y .

De�nition 2. The canonical cover for the set of FDs that hold over r is

Fr = fX ! A j X � R;A 2 R; r � X ! A;A 62 X; and X ! A is minimalg:

FastFDs assumes an alternate characterization of FDs, which relies on the con-
cept of a di�erence set.

De�nition 3. 1. For t1; t2 2 r, the di�erence set of t1 and t2 is

D(t1; t2) = fB 2 R j t1[B] 6= t2[B]g:

2. The di�erence sets of r are

Dr = fD(t1; t2) j t1; t2 2 r; D(t1; t2) 6= ;g:

3. Given a �xed A 2 R, the di�erence sets of r modulo A are

D
A
r = fD � fAg j D 2 Dr and A 2 Dg:

The set DAr will provide an alternate characterization of FDs over r with RHS
A (see lemma 1, below).

A B C D E F

t0 1 1 1 1 1 1
t1 0 0 0 1 1 1
t2 0 0 1 0 1 1
t3 0 1 0 1 1 0
t4 0 1 1 0 0 1
t5 0 0 0 0 1 1

Table 1. Example relation instance, r0.

Example 2. The example relation, r0, in table 1 is used to illustrate de�nition
3. The table depicts a Bernoulli relation instance over schema A;B;C;D;E; F .
In this case,
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1. D(t0; t3) = fACFg and D(t2; t3) = fBCDFg (for example).

2. Dr0 = fABC;ABD;ACF;ADE;ABCD;CD;BF;BCDE;D;BCDF;BE,
C;CDEF;BDF;BCEg.

3. DAr0 = fBC;BD;CF;DE;BCDg. ut

De�nition 4. Let P(R) be the power set of R and X � P(R). Then X � R
covers X i� 8 Y 2 X ; Y \X 6= ;. Furthermore, X is a minimal cover for X in
case no Z ( X covers X .

Consider X � R, A 62 X that covers DAr . Let D 2 DAr . Then X \ D 6= ;.
Thus, X distinguishes any two tuples that disagree on A. On the other hand,
this is exactly what it means that r � X ! A. Thus, we have:

Lemma 1. Let X � R and A 62 X. Then r � X ! A i� X covers DAr .

This lemma implies the main result of this section:

Theorem 1 ([MR 87,MR 94]). Let X � R, A 2 R �X, and r be a relation
instance over R. X ! A is a minimal functional dependency over r if and only
if X is a minimal cover of DAr (r).

Theorem 1 reduces the problem of computing Fr to the problem of �nding
minimal covers of DAr for each attribute A 2 R. In fact, any cover of DAr = fD 2

DAr j D0 2 DAr and D0 � D ) D0 = Dg is also a cover of DAr . Thus, we need
only retain minimal di�erence sets and compute minimal covers of DAr .

Example 3. Revisiting example 2, careful inspection shows that DAr0 = fBC;

BD; CF; DEg. The minimal covers of DAr0 are fCD;BCE;BDF;BEFg. Hence

the minimal FDs with RHS A are: CD ! A;BCE ! A;BDF ! A;BEF ! A.
ut

As a further optimization, if there is a pair of tuples that disagree only on
attribute A (i.e. ; 2 DAr ), then any X ! A that holds over r must be trivial.
This allows FastFDs and Dep-Miner to terminate early for such cases.

The idea of computing Fr by computing minimal covers of DAr was �rst
identi�ed in [MR 87] (full version [MR 94]). There, the authors note that the
elements of DAr form edges in a hypergraph; thus, the problem of computing
Fr reduces to the problem of computing minimal covers for hypergraphs. A
systematic study of complexity issues of many hypergraph problems relevant to
computer science is given in [EG 95]. A connection between a general framework
for many data mining problems (including the dependency discovery problem)
and the problem of �nding hypergraph traversals is studied in [GKMT 97].

This method also underpins the Dep-Miner algorithm of [LPL 00a] (full
version [LPL 00b]). The main di�erence between FastFDs and Dep-Miner is
that Dep-Miner employs a levelwise technique to compute these covers, whereas
FastFDs instead employs a heuristic-based depth-�rst search strategy.
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2.2 Computing Di�erence Sets

FastFDs �rst computes the di�erence sets Dr from r and R, using the procedure
genDi�Sets (�gure 1, below). Then, for each attribute A, DAr is computed from

Dr and the minimal cover of DAr is computed using the procedure �ndCovers
(�gure 4). In this subsection we describe genDi�Sets and in x2.3 we describe
�ndCovers. The computation of DAr from Dr involves a standard minimization
technique (such as sorting) and is not explicitly described.

One of the features of Tane is that its complexity is linear with respect to jrj
[HKP+ 99]. On the other hand, there are jrj(jrj � 1)=2 possible di�erence sets,
so computing these di�erence sets takes time O(jRjjrj2). In [LPL 00b], a method
is given for reducing the time needed to compute di�erence sets from r in some
cases. This method involves partitioning the relation, much like the partitioning
that occurs at the �rst level in the Tane algorithm. The method of [LPL 00b]
computes agree sets. Agree sets are the natural dual (under complementation)
of di�erence sets. As such, the di�erence set de�nitions translate naturally into
agree set counterparts.

De�nition 5. 1. Given t1; t2 2 r, the agree set for t1 and t2 is

A(t1; t2) = fB 2 R j t1[B] = t2[B]g:

2. The agree sets of r are

Ar = fA(t1; t2) j t1; t2 2 rg:

The next lemma (lemma 2) relates Dr to Ar. Given X � P(R), we de�ne

X { = fR�X j X 2 Xg:

Lemma 2. Given relation instance r over schema R and A 2 R, Dr = (Ar)
{.

Proof. Let D(t1; t2) 2 Dr, then, by de�nition, t1[B] = t2[B] for all B 2 R �
D(t1; t2). Thus, R � D(t1; t2) 2 Ar, so, D(t1; t2) 2 (Ar)

{. On the other hand,
let X 2 (Ar)

{, then, R �X 2 Ar. So, there exist t1; t2 2 r such that R �X =
A(t1; t2). Thus, by de�nition, t1[B] 6= t2[B] for all B 2 X . So, X 2 Dr. ut

To compute Dr, we �rst compute the agree sets of r, Ar. We then comple-
ment elements of Ar to arrive at Dr. The reason for this seemingly roundabout
method of computing Dr, is that candidates for computing agree sets are gen-
erated not from pairs of tuples from the original database, but from pairs of
tuples extracted from stripped partitions [LPL 00a]. For random integer-valued
relations, the number of tuples in the stripped partitions is signi�cantly less
than the number of tuples in the entire database, speeding up the computation
signi�cantly.5

5 For random Bernoulli relations, these \optimizations" in fact perform worse than a
brute-force pair calculation approach, due to the fact that partition strips are (on
average) half as long as the relation instance itself.
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De�nition 6. Given A 2 R, we de�ne the following.

1. Tuples t1; t2 2 r are equivalent modulo A, i.e. t1 �A t2 i� t1[A] = t2[A].
2. For t 2 r, let [[t]]A be the equivalence class of t under �A. Then the stripped

partition [LPL 00a] of A with respect to r is

�A = f[[t]]A j t 2 r and j[[t]]Aj > 1g:

3. The stripped partition database [LPL 00a] for r is

�r =
[
A2R

�A:

4. The maximal stripped partition database for r is

�r = f� 2 �r j �
0 2 �r and � � �0 ) �0 = �g:

The following lemma is shown in [LPL 00b]:

Lemma 3. Let t1; t2 2 r. If t1 and t2 do not appear together in some stripped
partition � 2 �r, then t1 and t2 disagree on every attribute.

Thus, it su�ces to look at tuple pairs of individual equivalence classes in each
� 2 �r to calculate the set Ar. This insight is behind the algorithm in �gure 1,
genDi�Sets, which generates the di�erence sets for a relation instance r.

method genDi�Sets:
input: schema R and r a relation instance over R
output: di�erence sets for r, Dr

// Initialize:
1. resDS := ;;
2. strips := ;;
3. tmpAS := ;;
// Compute stripped partitions for all attributes:
4. for A 2 R do

5. compute stripped partitions for A and add to strips;
// Compute agree sets from stripped partitions:
6. for � 2 strips do

7. for ti 2 � do

8. for tj 2 �, j > i do

9. add A(ti; tj) to tmpAS

// Complement agree sets to get di�erence sets:
10. for X 2 tmpAS do

11. add R�X to resDS;

Fig. 1. genDi�Sets: computing di�erence sets from a relation instance.

GenDi�Sets uses a simpli�ed method for calculating di�erence sets, compared
to [LPL 00b]. We have found that this simpler method, implemented in C++
performs well for random integer-databases (x3.1).
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2.3 Finding Minimal Covers of DA

r

The FastFDs algorithm utilizes a search procedure called �ndCovers (�gure
4). The search method �ndCovers uses is as follows. Every subset of R which
does not contain attribute A is a potential candidate for a minimal cover of
DAr . Consider a search tree representing a simple, \brute-force" method which
generates the subsets of R not containing A in a depth-�rst, left-to-right fashion.
Such a search tree is shown in �gure 2, for R = fA;B;C;D;E; Fg. Each node in
the tree represents a subset of R�fAg, given by the labeling along the path from
the root to that node. There are 2jRj�1 such nodes. Note that in generating the
subsets without repeats, we have \ordered" the attributes lexically: B > C >
D > E > F .

E

F

F

E

D

C

F

F

E

F

E F

F

D F

B

O

F

E

D

F F

E

C

F

. . . F

Fig. 2. Generating subsets of R� fAg.

The optimized search method �ndCovers uses constructs a search tree sim-
ilarly using an attribute ordering, however this new ordering changes as we
descend in our search. At each node in our new search tree, we order the re-
maining attributes according to how many di�erence sets they cover (that have
not been already covered at a node above this point). We break ties in this or-
dering lexically. This search pattern is illustrated in �gure 3 for the attribute A
and DAr0 from example 3. At each node in the search tree, we track the remaining

di�erence sets and the ordering of the remaining attributes.
The method shown in �gure 3 is the search strategy used by the method

�ndCovers, which underpins the FastFDs algorithm (�gure 4). Note that leaf
nodes appearing in �gure 3 are enumerated. Each leaf node represents one of
two base cases in our search.

1. If we arrive at a node where there are still di�erence sets left to cover, but
no attributes are left to unfold, fail (there are no FDs down this branch) {
see leaves 5, 7, and 8 in �gure 3.
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2 3 4

5
6

7

8

1

{ CF, DE }

[C > D > E > F]

{ DE }

[D > E]

{ }

[E]

{ }

[ ]

output

BCE −> A

[F]

{ CF }

{ }

[ ]

output

BDF −> A

{ CF } { CE }

. . .
{ BC, BD, DE }

[ ]

fail

[B > C > D > E > F]

B C

F

[F]

{ }

[ ]

output

BEF −> A

[ ]

fail

current ordering:

difference sets remaining: { BC, BD, CF, DE }

{ BD, DE }

[D > E]

{ }

[ ]

output

CD −> A

{ BD }

[ ]

fail

non−minimal

BCD −> A

fail

Fig. 3. Searching the subset lattice for minimal covers.

2. If we arrive at a node where there are no di�erence sets left, this implies one
of two situations.
(a) The FD may not be minimal; in this case fail (leaf 1). The minimality

check involves testing each immediate subset of the current LHS to see
if this subset also provides a legitimate LHS.

(b) Otherwise, output the subset built along the path to the current leaf as
a LHS for an FD for the current attribute (leaves 2, 3, 4, and 6).

We use a simple, greedy heuristic at each node: we will search the attributes
that cover the most remaining di�erence sets �rst. This heuristic works well in
practice (see x3), but can be fooled into performing excess work. Note that in
�gure 3 (leaf 1), the FD BCD ! A is not minimal, since CD ! A is also an FD
(leaf 6). In this case, it is the way we break ties (lexically) that causes the extra
branch; in general, the excess work is not straightforward to characterize. Thus,
we must perform a minimality check on each LHS as it is generated, before we
output the corresponding FD.6

As seen in �gure 3, the heuristic used at each node is based on a partial
ordering of R. We now formally de�ne this ordering. Let X � P(R). For A 2 R,

6 Another source of wasted work is the branches we traverse that do not contain a
cover of the di�erence sets. We can avoid some of this work by inserting a \cover
check" at each node that determines if the remaining attributes in the order indeed
cover the di�erence sets. In practise, this reduces the number of recursive calls by
roughly 30%, but the savings is moot because adding the cover check at each node
causes the program to take longer than simply traversing these \fail" branches.
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we de�ne the measure Cov(X ; A) = jfZ 2 XjA 2 Zgj. The attribute ordering,
> is as follows. For A;B 2 R:

A > B i�

(
Cov(X ; A) > Cov(X ; B) or

Cov(X ; A) = Cov(X ; B) and A is lexicographically larger than B:

The heuristic-based, depth �rst search seen in �gure 3 is encapsulated in the
recursive method �ndCovers (�gure 4).

To calculate Fr, we search a tree such as that in �gure 3 for each attribute
A 2 R. Note that if DAr = ;, no tuples di�ered on A, so the only minimal FD for
A is ; ! A. Also, as previously mentioned, if ; 2 DAr , there are no non-trivial
FDs for attribute A. The algorithm FastFDs (�gure 5) intercepts these cases,
and sets up the �ndCovers recursion correctly for A 2 R.

method �ndCovers:
input: attribute A 2 R (RHS)

original di�erence sets, DA
r

di�erence sets not thus far covered, Dcurr

the current path in the search tree, X � R

the current partial ordering of the attributes, >curr

output: minimal FDs of the form Y ! A

Base Cases:
1. if >curr= ; but Dcurr 6= ; then
2. return; // no FDs here

3. if Dcurr = ; then
4. if no subset of size jXj � 1 of X covers DA

r then

5. output X ! A and return;
6. else return; // wasted e�ort, non-minimal result

Recursive Case:
7. for attributes B in >curr in order do
8. Dnext := di�erence sets of Dcurr not covered by B;
9. >next is the total ordering of fB̂ 2 RjB̂ >curr Bg according to Dnext;
10. �ndCovers(A, DA

r , Dnext, X [ fBg, >next);

Fig. 4. �ndCovers: �nd minimal covers for DA
r

Complexity of FastFDs Recall that jrj = m, jRj = n, and let jFrj = K. Let
us consider the steps involved in FastFDs.

1. First, we must compute the di�erence sets for r, Dr; this takes O(nm
2) time.

To compute DAr from Dr, we minimize over sets X 2 Dr which contain A.
Let d = jDrj, then minimization takes time O(d log(d)); in terms of m and
n, this is O(nm2log(nm2)).
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method FastFDs:
input: relation instance r with schema R
output: canonical cover of minimal FDs over r, Fr

1. Dr := genDi�Sets(R,r);
2. for A 2 R do

3. compute DA
r from Dr;

4. if DA
r = ; then

5. output ; ! A;
6. else if ; 62 DA

r then

7. >init is the total ordering of R � fAg according to DA
r ;

8. �ndCovers(A, DA
r , D

A
r , ;, >init);

Fig. 5. FastFDs: compute minimal FDs from a relation instance.

2. Given that jFrj = K, the complexity of �ndCovers is O((1+w(n))K), where
w(n) is a function representing the wasted work due to our imperfect search
heuristic.7

3. Since we call �ndCovers for each attribute A 2 R, we have that the main
loop in FastFDs (lines 2-8) takes time O(n(1 + w(n))K).

Altogether, our method has worst case time complexity

O(nm2 + nm2 log(nm2) + n(1 + w(n))K):

However, the space complexity of FastFDs is exponentially less than that of
its levelwise-search counterparts, Dep-Miner and Tane. FastFDs is limited to
O(dn) space. The measure d is bounded by m(m � 1)=2 and in practice seems
to be much less than this. The levelwise approaches of Tane and Dep-Miner
consume an amount of space directly proportional to the largest set of candi-
dates generated, smax. Thus, FastFDs is signi�cantly faster than the levelwise
approach for large n, since the size of smax can be exponential in n. This trend
is especially manifested in the case of Bernoulli relation instances where the
average length of FDs is predicted to be n=2 or larger.

3 Experimental Results

FastFDs has been implemented in C++. The program has been tested on a
700MHz Athlon system with 128MB RAM, running Red Hat Linux 6.1.8 We
have also implemented our own version of Dep-Miner, which uses the same code
as FastFDs for reading input relations and calculating DAr . Our versions of both
Dep-Miner and FastFDs run entirely in main memory. The version of Tane we
use is available on the web [Tane].9

7 For n � 60, w(n) < 3 on the benchmark databases from x3.
8 The source code for FastFDs is available from the authors upon request.
9 We also indicate the performance of Tane/mem in the following tests.
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3.1 Integer-Valued Relation Instances

Our �rst set of experiments involved randomly-generated integer relation in-
stances. Table 2 (below) illustrates the performance of Tane, Dep-Miner and
FastFDs on such instances. Each instance is generated according to a correlation
factor (CF), as in [LPL 00a]. The higher the CF, the fewer distinct values appear
in each column.10 As the CF increases, the length of the stripped partitions in
our di�erence set computation also increases; thus the di�erence set calculation
becomes more time-consuming as the CF progressively increases.

Time (seconds)
Instance

CF = 0.0 CF = 0.5 CF = 0.9

jrj Dep/Fasty Tanez Dep/Fasty Tanez Dep/Fasty Tanez

50,000 5 13 6 10 6 7
100,000 12 38 13 27 13 17
150,000 19 78 21 50 19 29
200,000 25 133 29 78 26 41
250,000 33 207 37 115 33 57
300,000 40 478 46 360 41 158
350,000 48 � 69 476 54 196
yDep-Miner and FastFDs took the same amount of time (�0:01s).
zTane/mem took approximately the same amount of time as Tane (�1s).
� indicates Tane took longer than 2 hours and was aborted.

Table 2. Results on Random Integer-Valued Relation Instances; jRj = 20.

Qualitative Analysis of Table 2. Our results in table 2 are in line with those
reported in [LPL 00a]. However, there are several considerations which our tests
on random integer-valued instances reveal.

{ Less than 0.1% of the computation time for Dep-Miner and FastFDs is spent
searching for FDs; over 99.9% is spent computing di�erence sets.

{ As the CF increases, Tane's performance comes progressively closer to that
of Dep-Miner and FastFDs (�gure 6).

We believe the results in table 2 illustrate the di�erence between the best case of
the di�erence set computation (which appears linear in jRj and jrj, and occurs
only once for each instance) and the fact that Tane must compute a linear
partition at each stage of it's computation.

In conclusion, our results on randomly generated integer-valued instances
with 20 attributes indicate that Dep-Miner and FastFDs are 2-3 times faster for
CFs from 0.0-0.9.11

10 The range of distinct values for each attribute is (1� CF ) � num tuples.
11 Similar conclusions hold for 1-31 attributes. The version of Tane we utilized [Tane]

is limited to less than 32 attributes.
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Fig. 6. Results on random integer-valued instances (table 2).

Timey (seconds)
Instance

CF=0.0 CF = 0.5 CF = 0.9
jRj FastFDs Dep-Miner FastFDs Dep-Miner FastFDs Dep-Miner

10 0z 0z 0z 0z 0z 0z

20 0z 0.1 0.1 0.2 0.1 0.2
30 0.2 0.3 0.8 1.6 1.0 2.1
40 0.6 1.2 3.7 9.5 5.5 11.0
50 2.3 3.8 14.3 27.5 20.8 48.0
60 5.6 8.6 41.6 81.2 64.7 134.4

yTime reported is time to search for FDs.
zLess than 0.1s.

Table 3. Results on Random Integer-Valued Relation Instances; jrj �xed at 10,000;
the time to compute di�erence sets is omitted.

14



Qualitative Analysis of Table 3. Table 3 illustrates the relative performance
of FastFDs and Dep-Miner for a �xed number of tuples (10,000) as the number
of attributes varies from 10 to 60.12 Note that as the CF increases, FastFDs
becomes progressively more e�cient than Dep-Miner. For a CF of 0.0, FastFDs
is 1 2

3
times as e�cient, whereas for a CF of 0.9, FastFDs is over twice as e�cient.

Note that as the CF increases, the average length of the minimal FDs computed
increases slightly, from under 2 for a CF of 0.0 to over 3 for a CF of 0.9. This
trend may help explain the comparatively better performance of FastFDs as the
CF increases, and is born out by our experiments with Bernoulli instances (x3.2),
where Dep-Miner becomes drastically less e�cient than FastFDs as the average
length of the minimal FDs increases to jRj=2.

As we will see in the next sections (x3.2, x3.3), random integer-valued relation
instances with low CFs do not appear to be good predictors of performance
on real-life instances such as those from the ML repository. Bernoulli relation
instances appear notably better in this regard.

3.2 Bernoulli Relation Instances

Our second set of experiments involved randomly generated Bernoulli relation
instances. A Bernoulli relation involves only two values (usually 0 and 1). In
this respect, Bernoulli relations are similar to the \market basket" relations
considered in the frequent itemset problem [AMS+ 94].

Random Bernoulli instances are an interesting testbed for programs �nding
minimal FDs. Whereas random integer-valued instances seem quite amenable
to the search methods of FastFDs, Dep-Miner and Tane, there tend to be few
minimal FDs. This is not the case in Bernoulli instances. The average length
of minimal FDs in random Bernoulli databases has been investigated and is
straightforward to quantify [DKM+ 95]. For n attributes, the expected average
length of minimal FDs is n=2 when the number of tuples m = 2n=4. This length
represents the maximal possible number of subsets at any one level in the power-
set lattice of n attributes, and in practice the number of minimal FDs returned
when m = 2n=4 increases exponentially with n.

Since the case of minimal FDs of size n=2 involves relatively small-sized
databases for n less than 30, the impact of the O(nm2) di�erence set calculation
is minimized for Dep-Miner and FastFDs. Whereas in the random integer-valued
databases in x3.1 less than 0.1% of the computation time of Dep-Miner and
FastFDs is spent searching for FDs, in random Bernoulli instances where m =
2n=4, over 99% of the time is spent searching for FDs (as opposed to computing
di�erence sets).

Another reason this particular case is interesting is that, since there are so
many subsets of size n=2, levelwise algorithms require exponential space to store
the candidate sets at intermediate levels near to n=2. Thus, this test case allows

12 In Table 3, the time for computing di�erence sets is omitted, since it is identical for
both Dep-Miner and FastFDs.
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us to see the impact of the exponential space usage of the levelwise algorithms,
versus the O(nm2) space usage of FastFDs.

Table 4 (below) illustrates the relative performance of Tane, Dep-Miner and
FastFDs for the case of Bernoulli databases, where m = 2n=4 and n ranges from
20 to 28.

Instance Time (seconds)

jRj jrj = 2jRj=4 jFj fastFDs Taney Dep-Miner

20 32 7:6 � 104 2 5 195
21 38 1:4 � 105 5 15 601
22 45 2:6 � 105 11 36 1893
23 54 5:4 � 105 28 84 5169
24 64 1:0 � 106 69 392 14547
25 76 2:0 � 106 171 � 38492
26 91 3:9 � 106 428 � �
27 108 7:4 � 106 1081 � �
28 128 1:6 � 107 3167 � �
yTane/mem exhibited similar results.
� indicates program ran out of main memory.

Table 4. Results on Bernoulli Relation Instances.

Qualitative Analysis of Table 4. The number of FDs is increasing exponen-
tially with n; thus it is not surprising that the time of all three programs does
as well. However, here we can see the impact of the exponential space usage on
Tane and Dep-Miner. Initially (for n from 20 to 23), the computation time of
Tane is doubling, similarly to FastFDs computation time. Then, at n = 24, we
see a jump in the execution time of Tane, corresponding to heavy utilization
of disk swap space. For n � 25, execution of Tane was aborted after it ran out
of memory. The results for Dep-Miner are similar. Although Dep-Miner's space
usage seems slightly better than Tane's, Dep-Miner's performance is over two
orders of magnitude worse than FastFDs.

In contrast, FastFDs is never in danger of running out of memory. 13 This is
crucial, both because memory is a scarcer resource than CPU cycles, and because
the CPU cycles are utilized much more e�ciently when swapping is avoided.

Remark 1. One salient result of our tests is that for Bernoulli instances, the
di�erence set calculation is less e�cient than for random integer-valued instances
for largerm. In fact, for Bernoulli instances, a brute-force approach to computing
di�erence sets is more e�cient than the optimized approach given in [LPL 00a].
Thus, there are most likely better optimizations for computing the di�erence
sets for k-valued relation instances (small k).

13 Memory usage remains below 0.5MB for all n shown.
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Fig. 7. Results of table 4: right is logarithmic scale for the y-axis (execution time).

3.3 Machine Learning Repository Relation Instances

Our third set of experiments involved non-synthetic relations extracted from the
Machine Learning (ML) Repository, online [MM 96]. Table 5 shows the perfor-
mance of FastFDs, Tane and Dep-Miner on 9 relation instances extracted from
the ML Repository.14 Table 6 indicates the relative performance of Dep-Miner
and FastFDs on these same 9 relations with the e�ects of the di�erence set
calculation time factored out.

Qualitative Analysis of Tables 5 and 6. First, compare the running times
of FastFDs and Dep-Miner. FastFDs meets or exceeds Dep-Miner's performance
in all cases. As jRj becomes larger, FastFDs becomes increasingly faster than
Dep-Miner.

Now compare the running times of FastFDs and Tane. Here, the comparison
is not as straightforward. For large jrj, note the lengthy times of FastFDs. This
is due to the jrj2 di�erence set calculation. On the other hand, as the number
of attributes (jRj) grows, Tane experiences serious di�culties due to excessive
memory consumption. For the Horse-Colic database (jRj = 28), FastFDs �nds
the minimal FDs quickly;Tane runs out of memory. The best method for �nding
minimal FDs in real-life situations might involve a tradeo� between Tane (for
small jRj and large jrj) and FastFDs (for small jrj or larger jRj).

14 For all three programs, the tests were run on preprocessed, purely integer-valued ver-
sions of these ML relations, as in Tane. In addition, the three programs were tested
on the following instances and each returned in less than 0:1 second: Liver, Abalone,
Pima, Tic-Tac-Toe, Wisconsin Breast Cancer, Echocardiagram and Housing.
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ML Instance Time (seconds)
Name jRj jrj jFj FastFDs Tane Tane/mem Dep-Miner

Chess 7 28,056 1 160 1 0y 160
Flare 13 1389 0 5 11 1 5
Adult 15 48,842 66 7269 1722 � 7269

Credit 16 690 1099 2 1 0y 6
Letter Recognition 17 20,000 61 1577 2487 � 1645
Lymphography 19 148 2730 4 41 9 91
Hepatitis 20 155 8250 3 13 5 212
Automobile 26 205 4176 1 179 81 �
Horse Colic 28 300 128,726 123 � � �
y indicates program took less than 0.01 seconds to complete.
� indicates execution time exceeded 3 hours and was aborted.
� indicates program ran out of memory.

Table 5. Results on ML Repository Relation Instances.

ML Instance Time (seconds)
Name jRj jrj jFj FastFDs Dep-Miner

Chess 7 28,056 1 0y 0y

Flare 13 1389 0 0.5 0.5
Adult 15 48,842 66 4.4 4.8
Credit 16 690 1099 1.2 5.2
Letter Recognition 17 20,000 61 858.1 926.1
Lymphography 19 148 2730 4.3 90.8
Hepatitis 20 155 8250 3.0 212.0
Automobile 26 205 4176 1.0 �
Horse Colic 28 300 128,726 122.6 �
� indicates execution time exceeded 3 hours and was aborted.
� indicates program ran out of main memory.
y indicates time was less than 0:01s.

Table 6. Results on relation instances from table 5; the time for computing di�erence
sets is omitted.
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4 Conclusions and Further Directions

In this paper, we presented a novel search method, FastFDs, for computing
minimal FDs from di�erence sets using heuristic-driven, depth-�rst search.

Our experimental results (x3) indicate that FastFDs is competitive for each
of the following classes of benchmark relation instances: (1) random integer-
valued instances of varying correlation factors, (2) random Bernoulli instances,
and (3) real-life ML Repository relation instances. In fact, our experiments in-
dicate that for wide relations (large R), FastFDs is signi�cantly better for all
classes, due to the inherent space e�ciency of the depth-�rst search method.
For narrow relations, a better choice may be the Tane algorithm for class (3)
relation instances.

It is interesting that the heuristic-based, depth-�rst search methods common
in solutions to Arti�cial Intelligence (AI) problems are usually eschewed by the
data mining community, because they have a tendency not to scale up to the
massive amounts of data the data mining programs must be run on. However,
our experiments show that for the case of computing minimal covers of DAr , in
fact the AI search strategy fares signi�cantly better than the canonical levelwise
approach. In fact, for the case of Bernoulli databases, when the FDs computed
are of average length � jRj=2, the heuristic-driven approach is astoundingly
more e�cient (x3.2).

The space e�ciency of FastFDs makes it a natural algorithm for paralleliza-
tion. One obvious multi-threaded version of FastFDs would involve delegating
the search for FDs with RHS A to distinct processors for distinct attributes A.

The performance of FastFDs depends crucially on the simple, greedy heuris-
tic we have chosen for computing minimal hypergraph covers. Our heuristic
works for �nding minimal covers for generic hypergraphs; however, not every
hypergraph can be realized from a relation instance. Additional constraints are
implied by the relation instance which are not re
ected in the current heuristic.
Further study of these constraints with the aim of designing better heuristics
seems an interesting path to pursue.

Another useful direction for further study (pointed out in [MR 87]) is to
consider the incremental dependency inference problem: given, r, the canonical
cover of the set of dependencies Fr, and a tuple t, �nd the canonical cover of
r[ftg (or r�ftg). To the best of our knowledge, this problem has not yet been
addressed, and seems reasonably challenging.

Finally, it seems reasonable that most applications of the dependency infer-
ence problem do not require all dependencies but only the \interesting" ones.
For example, dependencies with small left-hand sides are likely to be more use-
ful that ones with large left-hand sides. Characterizing the interestingness of
dependencies and tailoring algorithms to �nding these dependencies is a good
direction for future work.
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A The Program fdep

There is another candidate program for �nding FDs in a relation instance {
fdep [FS 99]. This algorithm was developed by Flach and Savnik, and has been
experimentally compared to TANE [HKP+ 99], [FS 99]. The approach fdep uses
for �nding FDs is based on canonical AI methods for learning general logical
descriptions within hypotheses spaces [RN 95,FS 99]. Experiments show that,
in fact, a pure bottom up search method within this framework is superior,
when contrasted with a top-down search method, or bi-directional search [FS 99].
We ran experiments showing fdep's performance on the test canon of relation
instances. The version of fdep we tested is the version available on the web [Fdep].
Tables 7 and 8 (below) show the performance of fdep on random integer-valued
and Bernoulli relations.

The fdep search framework does not �t into the levelwise or breadth-�rst
heuristic frameworks discussed above. For certain small relations, the fdep search
method outperforms both TANE and FastFDs. However, an intrinsic drawback
of the fdep approach is that its complexity can be exponential in the size of the
input relation instance. This is a severe limitation from the database point of
view, albeit the fdep algorithm is quite successful from an AI theory point of
view.

Qualitative Analysis of Tables 7 and 8. The �gures in table 7 illustrate
fdep's poor performance as the number of tuples in the input relation increases
beyond 1000. On relations of the size shown in table 7, the algorithms FastFDs,
Tane, and Dep-Miner all complete in less than 1 second (table 2 contains results
for Dep-Miner, Tane, and FastFDs for relations of size � 50; 000). Table 8
illustrates fdep's exponential space requirements for Bernoulli relations. The
performance of FastFDs, Tane, and Dep-Miner are shown for comparison.

The performance of fdep on the ML relations is exhibited in table 9. The
performance of Tane and FastFDs is shown for comparison.
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Instance Time (seconds)
jrj CF = 0.0 CF = 0.5 CF = 0.9

10 0y 0y 1

100 0y 1 3
500 2 3 4
1,000 10 11 11
5,000 258 257 258
10,000 1035 1225 1779

y indicates execution time less than 0.5s.

Table 7. Results for fdep on Random Integer-Valued Relation Instances; jRj = 20.

Instance Time (seconds)

jRj jrj = 2jRj=4 FastFDs Tane fdep Dep-Miner

20 32 2 5 26 195
21 38 5 15 74 601
22 45 11 36 � 1893
23 54 28 84 � 5169
24 64 69 392 � 14547

� indicates program ran out of memory.

Table 8. Results for fdep on Bernoulli Relation Instances.

Qualitative Analysis of Tables 9 and 10. The results in table 9 show that
fdep takes more time than the other programs for the ML repository relations.
The only exceptions are, notably, the Lymphography and Horse Colic relations.
These relations exhibit a fairly large number of attributes (19 and 28, respec-
tively), yet a small number of tuples (148 and 300, respectively). Table 10 (below)
shows the result of running fdep on larger versions of the Horse Colic relation
(i.e. containing duplicate tuples). Note that the poor performance of fdep as the
relation increases in size becomes apparent. Fdep quickly becomes infeasible as
the size of the relation increases beyond 10,000 tuples. These experiments bear
out the results of [HKP+ 99], even for the improved solely bottom-up version of
fdep.
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ML Instance Time (seconds)
Name jRj jrj jFj FastFDs Tane Tane/mem fdep

Liver 7 345 25 0y 0y 0y 0y

Chess 7 28,056 1 160 1 0y 2129

Pima 9 768 153 0y 0y 0y 2
Abalone 9 4177 137 0y 0y 1 52

Tic-Tac-Toe 10 958 18 0y 0y 1 4

Wisc. breast cancer 11 699 46 0y 0y 0y 2

Echocardiagram 13 130 448 0y 0y 0y 0y

Flare 13 1389 0 5 11 1 9

Housing 14 506 478 0y 0y 0y 2
Credit 16 690 1099 2 1 0y 4
Letter Recognition 17 20,000 61 1577 2487 � 4312
Lymphography 19 148 2730 4 41 9 1
Hepatitis 20 155 8250 3 13 5 3
Automobile 26 205 4176 1 179 81 2
Horse Colic 28 300 128,726 123 � � 90
y indicates program took less than 0.5 seconds to complete.
� indicates program ran out of memory.

Table 9. Results on ML Repository Relation Instances.

Instance Time (seconds)
Name jrj fdep

Lymphography 148 1
Lymphography � 10 1,480 22
Lymphography � 100 14,800 4307

Horse Colic 300 90
Horse Colic � 10 3,000 228
Horse Colic � 100 30,000 42035

Table 10. Results on ML Relation Instances { Repeated Tuples.
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