
Discovering Denial Constraints

Xu Chu

⇤

University of Waterloo

x4chu@uwaterloo.ca

Ihab F. Ilyas

QCRI

ikaldas@qf.org.qa

Paolo Papotti

QCRI

ppapotti@qf.org.qa

ABSTRACT
Integrity constraints (ICs) provide a valuable tool for enforcing cor-
rect application semantics. However, designing ICs requires ex-
perts and time. Proposals for automatic discovery have been made
for some formalisms, such as functional dependencies and their ex-
tension conditional functional dependencies. Unfortunately, these
dependencies cannot express many common business rules. For
example, an American citizen cannot have lower salary and higher
tax rate than another citizen in the same state. In this paper, we
tackle the challenges of discovering dependencies in a more ex-
pressive integrity constraint language, namely Denial Constraints
(DCs). DCs are expressive enough to overcome the limits of pre-
vious languages and, at the same time, have enough structure to
allow efficient discovery and application in several scenarios. We
lay out theoretical and practical foundations for DCs, including a
set of sound inference rules and a linear algorithm for implication
testing. We then develop an efficient instance-driven DC discov-
ery algorithm and propose a novel scoring function to rank DCs for
user validation. Using real-world and synthetic datasets, we exper-
imentally evaluate scalability and effectiveness of our solution.

1. INTRODUCTION
As businesses generate and consume data more than ever, enforc-

ing and maintaining the quality of their data assets become critical
tasks. One in three business leaders does not trust the information
used to make decisions [12], since establishing trust in data be-
comes a challenge as the variety and the number of sources grow.
Therefore, data cleaning is an urgent task towards improving data
quality. Integrity constraints (ICs), originally designed to improve
the quality of a database schema, have been recently repurposed
towards improving the quality of data, either through checking the
validity of the data at points of entry, or by cleaning the dirty data
at various points during the processing pipeline [10, 13].Traditional
types of ICs, such as key constraints, check constraints, functional

⇤Work done while interning at QCRI.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 39th International Conference on Very Large Data Bases,
August 26th - 30th 2013, Riva del Garda, Trento, Italy.
Proceedings of the VLDB Endowment, Vol. 6, No. 13
Copyright 2013 VLDB Endowment 2150-8097/13/13... $ 10.00.

dependencies (FDs), and their extension conditional functional de-
pendencies (CFDs) have been proposed for data quality manage-
ment [7]. However, there is still a big space of ICs that cannot be
captured by the aforementioned types.

EXAMPLE 1. Consider the US tax records in Table 1. Each
record describes an individual address and tax information with 15
attributes: first and last name (FN, LN), gender (GD), area code
(AC), mobile phone number (PH), city (CT), state (ST), zip code
(ZIP), marital status (MS), has children (CH), salary (SAL), tax
rate (TR), tax exemption amount if single (STX), married (MTX),
and having children (CTX).

Suppose that the following constraints hold: (1) area code and
phone identify a person; (2) two persons with the same zip code
live in the same state; (3) a person who lives in Denver lives in
Colorado; (4) if two persons live in the same state, the one earning
a lower salary has a lower tax rate; and (5) it is not possible to
have single tax exemption greater than salary.

Constraints (1), (2), and (3) can be expressed as a key constraint,
an FD, and a CFD, respectively.
(1) : Key{AC,PH}
(2) : ZIP ! ST
(3) : [CT = ‘Denver’] ! [ST = ‘CO’]

Since Constraints (4) and (5) involve order predicates (>,<),
and (5) compares different attributes in the same predicate, they
cannot be expressed by FDs and CFDs. However, they can be ex-
pressed in first-order logic.
c4 : 8t

↵

, t
�

2 R, q(t
↵

.ST = t
�

.ST ^ t
↵

.SAL < t
�

.SAL
^t

↵

.TR > t
�

.TR)
c5 : 8t

↵

2 R, q(t
↵

.SAL < t
↵

.STX)
Since first-order logic is more expressive, Constraints (1)-(3) can

also be expressed as follows:
c1 : 8t

↵

, t
�

2 R, q(t
↵

.AC = t
�

.AC ^ t
↵

.PH = t
�

.PH)
c2 : 8t

↵

, t
�

2 R, q(t
↵

.ZIP = t
�

.ZIP ^ t
↵

.ST 6= t
�

.ST)
c3 : 8t

↵

2 R, q(t
↵

.CT = ‘Denver’ ^ t
↵

.ST 6= ‘CO’)

The more expressive power an IC language has, the harder it is
to exploit it, for example, in automated data cleaning algorithms,
or in writing SQL queries for consistency checking. There is an
infinite space of business rules up to ad-hoc programs for enforcing
correct application semantics. It is easy to see that a balance should
be achieved between the expressive power of ICs in order to deal
with a broader space of business rules, and at the same time, the
restrictions required to ensure adequate static analysis of ICs and
the development of effective cleaning and discovery algorithms.

Denial Constraints (DCs) [5, 13], a universally quantified first
order logic formalism, can express all constraints in Example 1 as
they are more expressive than FDs and CFDs. To clarify the con-
nection between DCs and the different classes of ICs we show in

1498

TID FN LN GD AC PH CT ST ZIP MS CH SAL TR STX MTX CTX
t1 Mark Ballin M 304 232-7667 Anthony WV 25813 S Y 5000 3 2000 0 2000
t2 Chunho Black M 719 154-4816 Denver CO 80290 M N 60000 4.63 0 0 0
t3 Annja Rebizant F 636 604-2692 Cyrene MO 64739 M N 40000 6 0 4200 0
t4 Annie Puerta F 501 378-7304 West Crossett AR 72045 M N 85000 7.22 0 40 0
t5 Anthony Landram M 319 150-3642 Gifford IA 52404 S Y 15000 2.48 40 0 40
t6 Mark Murro M 970 190-3324 Denver CO 80251 S Y 60000 4.63 0 0 0
t7 Ruby Billinghurst F 501 154-4816 Kremlin AR 72045 M Y 70000 7 0 35 1000
t8 Marcelino Nuth F 304 540-4707 Kyle WV 25813 M N 10000 4 0 0 0

Table 1: Tax data records.

Figure 1 a classification based on two criteria: (i) single tuple level
vs table level, and (ii) with constants involved in the constraint vs
with only column variables. DCs are expressive enough to cover
interesting ICs in each quadrant. DCs serve as a great compromise
between expressiveness and complexity for the following reasons:
(1) they are defined on predicates that can be easily expressed in
SQL queries for consistency checking; (2) they have been proven
to be a useful language for data cleaning in many aspects, such as
data repairing [10], consistent query answering [5], and expressing
data currency rules [13]; and (3) while their static analysis turns out
to be undecidable [3], we show that it is possible to develop a set of
sound inference rules and a linear implication testing algorithm for
DCs that enable an efficient adoption of DCs as an IC language, as
we show in this paper.

Figure 1: The ICs quadrant.

While DCs can be obtained through consultation with domain
experts, it is an expensive process and requires expertise in the con-
straint language at hand as shown in the experiments. We identified
three challenges that hinder the adoption of DCs as an efficient IC
language and in discovering DCs from an input data instance:
(1) Theoretical Foundation. The necessary theoretical foundations
for DCs as a constraint language are missing [13]. Armstrong Ax-
ioms and their extensions are at the core of state-of-the-art algo-
rithms for inferring FDs and CFDs [15, 17], but there is no similar
foundation for the design of tractable DCs discovery algorithms.

EXAMPLE 2. Consider the following constraint, c6, which
states that there cannot exist two persons who live in the same zip
code and one person has a lower salary and higher tax rate.
c6 : 8t

↵

, t
�

2 R, q(t
↵

.ZIP = t
�

.ZIP ^ t
↵

.SAL < t
�

.SAL
^t

↵

.TR > t
�

.TR)
c6 is implied by c2 and c4: if two persons live in the same zip

code, by c2 they would live in the same state and by c4 one person
cannot earn less and have higher tax rate in the same state.

In order to systematically identify implied DCs (such as c6), for
example, to prune redundant DCs, a reasoning system is needed.
(2) Space Explosion. Consider FDs discovery on schema R, let
|R| = m. Taking an attribute as the right hand side of an FD, any
subset of remaining m � 1 attributes could serve as the left hand
side. Thus, the space to be explored for FDs discovery is m⇤2m�1.
Consider discovering DCs involving at most two tuples without
constants; a predicate space needs to be defined, upon which the
space of DCs is defined. The structure of a predicate consists of two

different attributes and one operator. Given two tuples, we have 2m
distinct cells; and we allow six operators (=, 6=, >,, <,�). Thus
the size of the predicate space P is: |P| = 6 ⇤ 2m ⇤ (2m� 1). Any
subset of the predicate space could constitute a DC. Therefore, the
search space for DCs discovery is of size 2|P|.

DCs discovery has a much larger space to explore, further justi-
fying the need for a reasoning mechanism to enable efficient prun-
ing, as well as the need for an efficient discovery algorithm. The
problem is further complicated by allowing constants in the DCs.
(3) Verification. Since the quality of ICs is crucial for data qual-
ity, discovered ICs are usually verified by domain experts for their
validity. Model discovery algorithms suffer from the problem of
overfitting [6]; ICs found on the input instance I of schema R may
not hold on future data of R. This happens also for DCs discovery.

EXAMPLE 3. Consider DC c7 on Table 1, which states that
first name determines gender.
c7 : 8t

↵

, t
�

2 R, q(t
↵

.FN = t
�

.FN ^ t
↵

.GD 6= t
�

.GD)
Even if c7 is true on current data, common knowledge suggests

that it does not hold in general.

Statistical measures have been proposed to rank the constraints
and assist the verification step for specific cases. For CFDs it is
possible to count the number of tuples that match their tableaux [8].
Similar support measures are used for association rules [2].

Unfortunately, discovered DCs are more difficult to verify and
rank than previous formalisms for three reasons: (1) similarly to
FDs, in general it is not possible to just count constants to measure
support; (2) given the explosion of the space, the number of dis-
covered DCs is much larger than the size of discovered FDs; (3)
the semantics of FDs/CFDs is much easier to understand compared
to DCs. A novel and general measure of interestingness for DCs is
therefore needed to rank discovered constraints.

Contributions. Given the DCs discovery problem and the above
challenges, we make the following three contributions:

1. We give the formal problem definition of discovering DCs
(Section 3). We introduce static analysis for DCs with three
sound axioms that serve as the cornerstone for our implica-
tion testing algorithm as well as for our DCs discovery algo-
rithm (Section 4).

2. We present FASTDC, a DCs discovery algorithm (Section 5).
FASTDC starts by building a predicate space and calculates
evidence sets for it. We establish the connection between
discovering minimal DCs and finding minimal set covers for
evidence sets. We employ depth-first search strategy for find-
ing minimal set covers and use DC axioms for branch prun-
ing. To handle datasets that may have data errors, we extend
FASTDC to discover approximate constraints. Finally, we
further extend it to discover DCs involving constant values.

1499

3. We propose a novel scoring function, the interestingness of a
DC, which combines succinctness and coverage measures of
discovered DCs in order to enable their ranking and pruning
based on thresholds, thus reducing the cognitive burden for
human verification (Section 6).

We experimentally verify our techniques on real-life and syn-
thetic data (Section 7). We show that FASTDC is bound by the
number of tuples |I| and by the number of DCs |⌃|, and that the
polynomial part w.r.t. |I| can be parallelized. We show that the im-
plication test substantially reduces the number of DCs in the output,
thus reducing users’ effort in verifying DCs. We also verify how ef-
fective our scoring function is at identifying interesting constraints.

2. RELATED WORK
Our work finds similarities with several bodies of work: static

analysis of ICs, dependency discovery, and scoring of ICs.
Whenever a dependency language is proposed, the static analy-

sis should be investigated.Static analysis for FDs has been laid out
long ago [1], in which it is shown that static analysis for FDs can
be done in linear time w.r.t. the number of FDs and three inference
rules are proven to be sound and complete. Conditional functional
dependencies were first proposed by Bohannon et al. [7], where im-
plication and consistency problems were shown to be intractable.
In addition, a set of sound and complete inference rules were also
provided, which were later simplified by Fan [14]. Though denial
constraints have been used for data cleaning as well as consistent
query answering [5, 10], static analysis has been done only for spe-
cial fragments, such as currency rules [13].

In the context of constraints discovery, FDs attracted the most
attention and whose methodologies can be divided into schema-
driven and instance-driven approaches. TANE is a representative
for the schema-driven approach [17]. It adopts a level-wise can-
didate generation and pruning strategy and relies on a linear algo-
rithm for checking the validity of FDs. TANE is sensitive to the
size of the schema. FASTFD is a an instance-driven approach [19],
which first computes agree-sets from data, then adopts a heuristic-
driven depth-first search algorithm to search for covers of agree-
sets. FASTFD is sensitive to the size of the instance. Both al-
gorithms were extended in [15] for discovering CFDs. CFDs dis-
covery is also studied in [8], which not only is able to discover
exact CFDs but also outputs approximate CFDs and dirty values
for approximate CFDs, and in [16], which focuses on generating
a near-optimal tableaux assuming an embedded FD is provided.
The lack of an efficient DCs validity checking algorithm makes the
schema-driven approach for DCs discovery infeasible. Therefore,
we extend FASTFD for DCs discovery.

Another aspect of discovering ICs is to measure the importance
of ICs according to a scoring function. In FDs discovery, Ilyas et
al. examined the statistical correlations for each column pair to dis-
cover soft FDs [18]. In CFDs discovery some measures have been
proposed, including support, which is defined as the percentage of
the tuples in the data that match the pattern tableaux, conviction,
and �2 test [8, 15]. Our scoring function identifies two principles
that are widely used in data mining, and combines them into a uni-
fied function, which is fundamentally different from previous scor-
ing functions for discovered ICs.

3. DENIAL CONSTRAINTS AND DISCOV-
ERY PROBLEM

In this section, we first review the syntax and semantics of DCs.
Then, we define minimal DCs and state their discovery problem.

3.1 Denial Constraints (DCs)
Syntax. Consider a database schema of the form S = (U,R,B),

where U is a set of database domains, R is a set of database predi-
cates or relations, and B is a set of finite built-in operators. In this
paper, B = {=, <,>, 6=,,�}. B must be negation closed, such
that we could define the inverse of operator � as �.

We support the subset of integrity constraints identified by denial
constraints (DCs) over relational databases. We introduce a nota-
tion for DCs of the form ' : 8t

↵

, t
�

, t
�

, . . . 2 R, q(P1^. . .^P
m

),
where P

i

is of the form v1�v2 or v1�c with v1, v2 2 t
x

.A, x 2
{↵,�, �, . . .}, A 2 R, and c is a constant. For simplicity, we as-
sume there is only one relation R in R.

For a DC ', if 8P
i

, i 2 [1,m] is of the form v1�v2, then we
call such DC variable denial constraint (VDC), otherwise, ' is a
constant denial constraint (CDC).

The inverse of predicate P : v1�1v2 is P : v1�2v2,with �2 = �1.
If P is true, then P is false. The set of implied predicates of P is
Imp(P) = {Q|Q : v1�2v2}, where �2 2 Imp(�1). If P is true,
then 8Q 2 Imp(P), Q is true. The inverse and implication of the
six operators in B is summarized in Table 2.

� = 6= > < �
� 6= = � < >

Imp(�) =,�, 6= >,�, 6= <,, 6= �

Table 2: Operator Inverse and Implication.

Semantics. A DC states that all the predicates cannot be true at
the same time, otherwise, we have a violation. Single-tuple con-
straints (such as check constraints), FDs, and CFDs are special
cases of unary and binary denial constraints with equality and in-
equality predicates. Given a database instance I of schema S and a
DC ', if I satisfies ', we write I |= ', and we say that ' is a valid
DC. If we have a set of DC ⌃, I |= ⌃ if and only if 8' 2 ⌃, I |= '.

A set of DCs ⌃ implies ', i.e., ⌃ |= ', if for every instance I of
S, if I |= ⌃, then I |= '.

In the context of this paper, we are only interested in DCs with
at most two tuples. DCs involving more tuples are less likely in
real life, and incur bigger predicate space to search as shown in
Section 5. The universal quantifier for DCs with at most two tuples
are 8t

↵

, t
�

. We will omit universal quantifiers hereafter.

3.2 Problem Definition
Trivial, Symmetric, and Minimal DC. A DC q(P1 ^ . . .^P

n

)
is said to be trivial if it is satisfied by any instance. In the sequel,
we only consider nontrivial DCs unless otherwise specified. The
symmetric DC of a DC '1 is a DC '2 by substituting t

↵

with t
�

,
and t

�

with t
↵

. If '1 and '2 are symmetric, then '1 |= '2 and
'2 |= '1. A DC '1 is set-minimal, or minimal, if there does not
exist '2, s.t. I |= '1, I |= '2 , and '2.P res ⇢ '1.P res. We use
'.P res to denote the set of predicates in DC '.

EXAMPLE 4. Consider three additional DCs for Table 1.
c8 :q(t

↵

.SAL = t
�

.SAL ^ t
↵

.SAL > t
�

.SAL)
c9 :q(t

↵

.PH = t
�

.PH)
c10 :q(t

↵

.ST = t
�

.ST ^t
↵

.SAL > t
�

.SAL^t
↵

.TR < t
�

.TR)
c8 is a trivial DC, since there cannot exist two persons that have

the same salary, and one’s salary is greater than the other. If we
remove tuple t7 in Table 1, c9 becomes a valid DC, making c1 no
longer minimal. c10 and c4 are symmetric DCs.

Problem Statement. Given a relational schema R and an in-
stance I , the discovery problem for DCs is to find all valid minimal
DCs that hold on I . Since the number of DCs that hold on a dataset

1500

is usually very big, we also study the problem of ranking DCs with
an objective function described in Section 6.

4. STATIC ANALYSIS OF DCS
Since DCs subsume FDs and CFDs, it is natural to ask whether

we can perform reasoning the same way. An inference system for
DCs enables pruning in a discovery algorithm. Similarly, an impli-
cation test is required to reduce the number of DCs in the output.

4.1 Inference System
Armstrong Axioms are the fundamental building blocks for im-

plication analysis for FDs [1]. We present three symbolic inference
rules for DCs, denoted as I, analogous to such Axioms.
Triviality: 8P

i

, P
j

, if P
i

2 Imp(P
j

), then q(P
i

^ P
j

) is a trivial
DC.
Augmentation: If q(P1 ^ . . . ^ P

n

) is a valid DC, then q(P1 ^
. . . ^ P

n

^Q) is also a valid DC.
Transitivity: If q(P1^ . . .^P

n

^Q1) and q(R1^ . . .^R
m

^Q2)
are valid DCs, and Q2 2 Imp(Q1), then q(P1 ^ . . . ^ P

n

^R1 ^
. . . ^R

m

) is also a valid DC.
Triviality states that, if a DC has two predicates that cannot be

true at the same time (P
i

2 Imp(P
j

)), then the DC is trivially
satisfied. Augmentation states that, if a DC is valid, adding more
predicates will always result in a valid DC. Transitivity states, that
if there are two DCs and two predicates (one in each DC) that can-
not be false at the same time (Q2 2 Imp(Q1)), then merging two
DCs plus removing those two predicates will result in a valid DC.

Inference system I is a syntactic way of checking whether a set
of DCs ⌃ implies a DC '. It is sound in that if by using I a DC '
can be derived from ⌃, i.e., ⌃ `I ', then ⌃ implies ', i.e., ⌃ |=
'. The completeness of I dictates that if ⌃ |= ', then ⌃ `I '.
We identify a specific form of DCs, for which I is complete. The
specific form requires that each predicate of a DC is defined on two
tuples and on the same attribute, and that all predicates must have
the same operator ✓ except one that must have the reverse of ✓.

THEOREM 1. The inference system I is sound. It is also com-
plete for VDCs of the form 8t

↵

, t
�

2 R, q(P1 ^ . . . ^ P
m

^ Q),
where P

i

= t
↵

.A
i

✓t
�

.A
i

, 8i 2 [1,m] and Q = t
↵

.B✓t
�

.B with
A

i

, B 2 U.

Formal proof for Theorem 1 is reported in the extended version
of this paper [9]. The completeness result of I for that form of
DCs generalizes the completeness result of Armstrong Axioms for
FDs. In particular, FDs adhere to the form with ✓ being =. The
partial completeness result for the inference system has no impli-
cation on the completeness of the discovery algorithms described
in Section 5. We will discuss in the experiments how, although not
complete, the inference system I has a huge impact on the pruning
power of the implication test and on the FASTDC algorithm.

4.2 Implication Problem
Implication testing refers to the problem of determining whether

a set of DCs ⌃ implies another DC '. It has been established that
the complexity of the implication testing problem for DCs is coNP-
Complete [3]. Given the intractability result, we have devised a
linear, sound, but not complete, algorithm for implication testing to
reduce the number of DCs in the discovery algorithm output.

In order to devise an efficient implication testing algorithm, we
define the concept of closure in Definition 1 for a set of predicates
W under a set of DCs ⌃. A predicate P is in the closure if adding
P to W would constitute a DC implied by ⌃. It is in spirit similar
to the closure of a set of attributes under a set of FDs.

DEFINITION 1. The closure of a set of predicates W, w.r.t. a
set of DCs ⌃, is a set of predicates, denoted as Clo⌃(W), such that
8P 2 Clo⌃(W), ⌃ |=q(W ^ P).

Algorithm 1 GET PARTIAL CLOSURE:
Input: Set of DCs ⌃, Set of Predicates W
Output: Set of predicates called closure of W under ⌃ : Clo⌃(W)
1: for all P 2W do
2: Clo⌃(W) Clo⌃(W) + Imp(P)
3: Clo⌃(W) Clo⌃(W) + Imp(Clo⌃(W))
4: for each P , create a list L

P

of DCs containing P
5: for each ', create a list L

'

of predicates not yet in the closure
6: for all ' 2 ⌃ do
7: for all P 2 '.P res do
8: L

P

 L
P

+ '
9: for all P /2 Clo⌃(W) do

10: for all ' 2 L
P

do
11: L

'

 L
'

+ P
12: create a queue J of DC with all but one predicate in the closure
13: for all ' 2 ⌃ do
14: if |L

'

| = 1 then
15: J J + '
16: while |J | > 0 do
17: ' J.pop()
18: P L

'

.pop()
19: for all Q 2 Imp(P) do
20: for all ' 2 L

Q

do
21: L

'

 L
'

�Q
22: if |L

'

| = 1 then
23: J J + '
24: Clo⌃(W) Clo⌃(W) + Imp(P)
25: Clo⌃(W) Clo⌃(W) + Imp(Clo⌃(W))
26: return Clo⌃(W)

Algorithm 1 calculates the partial closure of W under ⌃, whose
proof of correctness is provided in [9]. We initialize Clo⌃(W) by
adding every predicate in W and their implied predicates due to
Axiom Triviality (Line 1-2). We add additional predicates that are
implied by Clo⌃(W) through basic algebraic transitivity (Line 3).
The closure is enlarged if there exists a DC ' in ⌃ such that all but
one predicates in ' are in the closure (Line 15-23). We use two lists
to keep track of exactly when such condition is met (Line 3-11).

EXAMPLE 5. Consider ⌃={c1, . . . , c5} and W = {t
↵

.ZIP =
t
�

.ZIP, t
↵

.SAL < t
�

.SAL}.
The initialization step in Line(1-3) results in Clo⌃(W) =

{t
↵

.ZIP = t
�

.ZIP, t
↵

.SAL < t
�

.SAL, t
↵

.SAL t
�

.SAL}.
As all predicates but t

↵

.ST 6= t
�

.ST of c2 are in the clo-
sure, we add the implied predicates of the reverse of t

↵

.ST 6=
t
�

.ST to it and Clo⌃(W) = {t
↵

.ZIP = t
�

.ZIP, t
↵

.SAL <
t
�

.SAL, t
↵

.SAL t
�

.SAL, t
↵

.ST = t
�

.ST}. As all predi-
cates but t

↵

.TR > t
�

.TR of c4 are in the closure (Line 22), we
add the implied predicates of its reverse, Clo⌃(W) = {t

↵

.ZIP =
t
�

.ZIP, t
↵

.SAL < t
�

.SAL, t
↵

.SAL t
�

.SAL, t
↵

.TR
t
�

.TR}. No more DCs are in the queue (Line 16).
Since t

↵

.TR t
�

.TR 2 Clo⌃(W), we have ⌃ |=q(W ^
t
↵

.TR > t
�

.TR), i.e., ⌃ |= c6.

Algorithm 2 tests whether a DC ' is implied by a set of DCs
⌃, by computing the closure of '.P res in ' under �, which is ⌃
enlarged with symmetric DCs. If there exists a DC � in �, whose
predicates are a subset of the closure, ' is implied by ⌃. The proof
of soundness of Algorithm 2 is in [9], which also shows a coun-
terexample where ' is implied by ⌃, but Algorithm 2 fails.

EXAMPLE 6. Consider a database with two numerical
columns, High (H) and Low (L). Consider two DCs c11, c12.

1501

Algorithm 2 IMPLICATION TESTING

Input: Set of DCs ⌃, one DC '
Output: A boolean value, indicating whether ⌃ |= '
1: if ' is a trivial DC then
2: return true
3: � ⌃
4: for � 2 ⌃ do
5: � �+ symmetric DC of �
6: Clo�('.P res) = getClosure('.P res,�)
7: if 9� 2 �, s.t. �.P res ✓ Clo�('.P res) then
8: return true

c11 : 8t
↵

, (t
↵

.H < t
↵

.L)
c12 : 8t

↵

, t
�

, (t
↵

.H > t
�

.H ^ t
�

.L > t
↵

.H)
Algorithm 2 identifies that c11 implies c12. Let ⌃ = {c11} and

W = c12.P res. � = {c11, c13}, where c13: 8t
�

, (t
�

.H < t
�

.L).
Clo�(W) = {t

↵

.H > t
�

.H, t
�

.L > t
↵

.H, t
�

.H < t
�

.L}, be-
cause t

�

.H < t
�

.L is implied by {t
↵

.H > t
�

.H, t
�

.L > t
↵

.H}
through basic algebraic transitivity (Line 3).

Since c13.P res ⇢ Clo�(W), the implication holds.

5. DCS DISCOVERY ALGORITHM
Algorithm 3 describes our procedure for discovering minimal

DCs. Since a DC is composed of a set of predicates, we build a
predicate space P based on schema R (Line 1). Any subset of P
could be a set of predicates for a DC.

Algorithm 3 FASTDC
Input: One relational instance I , schema R
Output: All minimal DCs ⌃
1: P BUILD PREDICATE SPACE(I, R)
2: Evi

I

 BUILD EVIDENCE SET(I,P)
3: MC SEARCH MINIMAL COVERS(Evi

I

, Evi
I

, ;, >
init

, ;)
4: for all X 2 MC do
5: ⌃ ⌃+q(X)
6: for all ' 2 ⌃ do
7: if ⌃� ' |= ' then
8: remove ' from ⌃

Given P, the space of candidate DCs is of size 2|P|. It is not
feasible to validate each candidate DC directly over I , due to the
quadratic complexity of checking all tuple pairs. For this reason,
we extract evidence from I in a way that enables the reduction of
DCs discovery to a search problem that computes valid minimal
DCs without checking each candidate DC individually.

The evidence is composed of sets of satisfied predicates in P,
one set for every pair of tuples (Line 2). For example, assume
two satisfied predicates for one tuple pair: t

↵

.A = t
�

.A and
t
↵

.B = t
�

.B. We use the set of satisfied predicates to derive the
valid DCs that do not violate this tuple pair. In the example, two
sample DCs that hold on that tuple pair are q(t

↵

.A 6= t
�

.A) and
q(t

↵

.A = t
�

.A ^ t
↵

.B 6= t
�

.B). Let Evi
I

be the sets of satisfied
predicates for all pairs of tuples, deriving valid minimal DCs for
I corresponds to finding the minimal sets of predicates that cover
Evi

I

(Line 3)1. For each minimal cover X, we derive a valid min-
imal DC by inverting each predicate in it (Lines 4-5). We remove
implied DCs from ⌃ with Algorithm 2 (Lines 6-8).

Section 5.1 describes the procedure for building the predicate
space P. Section 5.2 formally defines Evi

I

, gives a theorem that
reduces the problem of discovering all minimal DCs to the problem
of finding all minimal covers for Evi

I

, and presents a procedure for

1For sake of presentation, parameters are described in Section 5.3

building Evi
I

. Section 5.3 describes a search procedure for find-
ing minimal covers for Evi

I

. In order to reduce the execution time,
the search is optimized with a dynamic ordering of predicates and
branch pruning based on the axioms we developed in Section 4. In
order to enable further pruning, Section 5.4 introduces an optimiza-
tion technique that divides the space of DCs and performs DFS on
each subspace. We extend FASTDC in Section 5.5 to discover ap-
proximate DCs and in Section 5.6 to discover DCs with constants.

5.1 Building the Predicate Space
Given a database schema R and an instance I , we build a pred-

icate space P from which DCs can be formed. For each attribute
in the schema, we add two equality predicates (=, 6=) between two
tuples on it. In the same way, for each numerical attribute, we add
order predicates (>,, <,�). For every pair of attributes in R,
they are joinable (comparable) if equality (order) predicates hold
across them, and add cross column predicates accordingly.

Profiling algorithms [11] can be used to detect joinable and com-
parable columns. We consider two columns joinable if they are of
same type and have common values2. Two columns are compara-
ble if they are both of numerical types and the arithmetic means of
two columns are within the same order of magnitude.

EXAMPLE 7. Consider the following Employee table with
three attributes: Employee ID (I), Manager ID (M), and Salary(S).

TID I(String) M(String) S(Double)
t9 A1 A1 50
t10 A2 A1 40
t11 A3 A1 40

We build the following predicate space P for it.
P1 : t

↵

.I = t
�

.I P5 : t
↵

.S = t
�

.S P9 : t
↵

.S < t
�

.S
P2 : t

↵

.I 6= t
�

.I P6 : t
↵

.S 6= t
�

.S P10 : t
↵

.S � t
�

.S
P3 : t

↵

.M = t
�

.M P7 : t
↵

.S > t
�

.S P11 : t
↵

.I = t
↵

.M
P4 : t

↵

.M 6= t
�

.M P8 : t
↵

.S t
�

.S P12 : t
↵

.I 6= t
↵

.M
P13 : t

↵

.I = t
�

.M P14 : t
↵

.I 6= t
�

.M

5.2 Evidence Set
Before giving formal definitions of Evi

I

, we show an example
of the satisfied predicates for the Employee table Emp above:
Evi

Emp

= {{P2, P3, P5, P8, P10, P12, P14},
{P2, P3, P6, P8, P9, P12, P14}, {P2, P3, P6, P7, P10, P11, P13}}.
Every element in Evi

Emp

has at least one pair of tuples in I such
that every predicate in it is satisfied by that pair of tuples.

DEFINITION 2. Given a pair of tuple ht
x

, t
y

i 2 I , the sat-
isfied predicate set for ht

x

, t
y

i is SAT (ht
x

, t
y

i) = {P |P 2
P, ht

x

, t
y

i |= P}, where P is the predicate space, and ht
x

, t
y

i |= P
means ht

x

, t
y

i satisfies P .
The evidence set of I is Evi

I

= {SAT (ht
x

, t
y

i)|8ht
x

, t
y

i 2 I}.
A set of predicates X ✓ P is a minimal set cover for Evi

I

if
8E 2 Evi

I

,X\E 6= ;, and @Y ⇢ X, s.t. 8E 2 Evi
I

,Y\E 6= ;.

The minimal set cover for Evi
I

is a set of predicates that inter-
sect with every element in Evi

I

. Theorem 2 transforms the prob-
lem of minimal DCs discovery into the problem of searching for
minimal set covers for Evi

I

.

THEOREM 2. q(X1 ^ . . . ^X
n

) is a valid minimal DC if and
only if X = {X1, . . . , Xn

} is a minimal set cover for Evi
I

.
2We show in the experiments that requiring at least 30% common
values allows to identify joinable columns without introducing a
large number of unuseful predicates. Joinable columns can also be
discovered from query logs, if available.

1502

Proof. Step 1: we prove if X ✓ P is a cover for Evi
I

, q(X1^ . . .^
X

n

) is a valid DC. According to the definition, Evi
I

represents all
the pieces of evidence that might violate DCs. For any E 2 Evi

I

,
there exists X 2 X, s.t. X 2 E; thus X /2 E. I.e., the presence of
X in q(X1 ^ . . . ^X

n

) disqualifies E as a possible violation.
Step 2: we prove if q(X1^. . .^Xn

) is a valid DC, then X ✓ P is
a cover. According to the definition of valid DC, there does not ex-
ist tuple pair ht

x

, t
y

i, s.t. ht
x

, t
y

i satisfies X1, . . . , X
n

simultane-
ously. In other words, 8ht

x

, t
y

i, 9X
i

, s.t. ht
x

, t
y

i does not satisfy
X

i

. Therefore, 8ht
x

, t
y

i, 9X
i

, s.t. ht
x

, t
y

i |= X
i

, which means
any tuple pair’s satisfied predicate set is covered by {X1, . . . , Xn

}.
Step 3: if X ✓ P is a minimal cover, then the DC is also minimal.

Assume the DC is not minimal, there exists another DC ' whose
predicates are a subset of q(X1 ^ . . . ^ X

n

). According to Step
2, '.P res is a cover, which is a subset of X = {X1, . . . , Xn

}. It
contradicts with the assumption that X ✓ P is a minimal cover.

Step 4: if the DC is minimal, then the corresponding cover is
also minimal. The proof is similar to Step 3. ⇧

EXAMPLE 8. Consider Evi
Emp

for the table in Example 7.
X1 = {P2} is a minimal cover, thus q(P2), i.e., q(t

↵

.I = t
�

.I)
is a valid DC, which states I is a key.

X2 = {P10, P14} is another minimal cover, thus q(P10 ^ P14),
i.e., q(t

↵

.S < t
�

.S ^ t
↵

.I = t
�

.M) is another valid DC, which
states that a manager’s salary cannot be less than her employee’s.

The procedure to compute Evi
I

follows directly from the defi-
nition: for every tuple pair in I , we compute the set of predicates
that tuple pair satisfies, and we add that set into Evi

I

. This oper-
ation is sensitive to the size of the database, with a complexity of
O(|P| ⇥ |I|2). However, for every tuple pair, computing the sat-
isfied set of predicates is independent of each other. In our imple-
mentation we use the Grid Scheme strategy, a standard approach to
scale in entity resolution [4]. We partition the data into B blocks,
and define each task as a comparison of tuples from two blocks.
The total number of tasks is B

2

2 . Suppose we have M machines,
we need to distribute the tasks evenly to M machines so as to fully
utilize every machine, i.e., we need to ensure B

2

2 = w ⇥ M with
w the number of tasks for each machine. Therefore, the number of
blocks B =

p
2wM . In addition, as we need at least two blocks

in memory at any given time, we need to make sure that (2⇥ |I|
B

⇥
Size of a Tuple) < Memory Limit.

5.3 DFS for Minimal Covers
Algorithm 4 presents the depth-first search (DFS) procedure for

minimal covers for Evi
I

. Ignore Lines (9-10) and Lines (11-12)
for now, as they are described in Section 5.4 and in Section 6.3,
respectively. We denote by Evi

curr

the set of elements in Evi
I

not
covered so far. Initially Evi

curr

= Evi
I

. Whenever a predicate P
is added to the cover, we remove from Evi

curr

the elements that
contain P , i.e., Evi

next

= {E|E 2 E
curr

^ P /2 E} (Line 23).
There are two base cases to terminate the search:

(i) there are no more candidate predicates to include in the cover,
but Evi

curr

6= ; (Lines 14-15); and
(ii) Evi

curr

= ; and the current path is a cover (Line 16). If the
cover is minimal, we add it to the result MC (Lines 17-19).

We speed up the search procedure by two optimizations: dy-
namic ordering of predicates as we descend down the search tree
and branching pruning based on the axioms in Section 4.

Opt1: Dynamic Ordering. Instead of fixing the order of
predicates when descending down the tree, we dynamically or-
der the remaining candidate predicates, denoted as >

next

, based
on the number of remaining evidence set they cover (Lines 23

Algorithm 4 SEARCH MINIMAL COVERS

Input: 1. Input Evidence set, Evi
I

2. Evidence set not covered so far, Evi
curr

3. The current path in the search tree, X ✓ P
4. The current partial ordering of the predicates, >

curr

5. The DCs discovered so far, ⌃
Output: A set of minimal covers for Evi, denoted as MC
1: Branch Pruning
2: P X.last // Last Predicate added into the path
3: if 9Q 2 X� P , s.t. P 2 Imp(Q) then
4: return //Triviality pruning
5: if 9Y 2 MC, s.t. X ◆ Y then
6: return //Subset pruning based on MC
7: if 9Y = {Y1, . . . , Yn

} 2 MC, and 9i 2 [1, n],
and 9Q 2 Imp(Y

i

), s.t. Z = Y�i

[Q and X ◆ Z then
8: return //Transitive pruning based on MC
9: if 9' 2 ⌃, s.t. X ◆ '.P res then

10: return //Subset pruning based on previous discovered DCs
11: if Inter(') < t, 8' of the form q(X ^W) then
12: return //Pruning based on Inter score
13: Base cases
14: if >

curr

= ; and Evi
curr

6= ; then
15: return //No DCs in this branch
16: if Evi

curr

= ; then
17: if no subset of size |X|� 1 covers Evi

curr

then
18: MC MC + X
19: return //Got a cover
20: Recursive cases
21: for all Predicate P 2>

curr

do
22: X X + P
23: Evi

next

 evidence sets in Evi
curr

not yet covered by P
24: >

next

 total ordering of {P 0|P >
curr

P 0} wrt Evi
next

25: SEARCH MINIMAL COVERS(Evi
I

, Evi
next

, X, >
next

, ⌃)
26: X X� P

-24). Formally, we define the cover of P w.r.t. Evi
next

as
Cov(P,Evi

next

) = |{P 2 E|E 2 Evi
next

}|. And we say
that P >

next

Q if Cov(P,Evi
next

) > Cov(Q,Evi
next

), or
Cov(P,Evi

next

) = Cov(Q,Evi
next

) and P appears before Q
in the preassigned order in the predicate space. The initial evidence
set Evi

I

is computed as discussed in Section 5.2. To computer
Evi

next

(Line 21), we scan every element in Evi
curr

, and we add
in Evi

next

those elements that do not contain P .

EXAMPLE 9. Consider Evi
Emp

for the table in Ex-
ample 7. We compute the cover for each predicate,
such as Cov(P2, Evi

Emp

) = 3, Cov(P8, Evi
Emp

) = 2,
Cov(P9, Evi

Emp

) = 1, etc. The initial ordering for the predicates
according to Evi

Emp

is >
init

= P2 > P3 > P6 > P8 > P10 >
P12 > P14 > P5 > P7 > P9 > P11 > P13.

Opt2: Branch Pruning. The purpose of performing dynamic
ordering of candidate predicates is to get covers as early as possible
so that those covers can be used to prune unnecessary branches of
the search tree. We list three pruning strategies.

(i) Lines(2-4) describe the first pruning strategy. This branch
would eventually result in a DC of the form ' :q(X � P ^P ^W),
where P is the most recent predicate added to this branch and W
other predicates if we traverse this branch. If 9Q 2 X � P , s.t.
P 2 Imp(Q), then ' is trivial according to Axiom Triviality.

(ii) Lines(5-6) describe the second branch pruning strategy,
which is based on MC. If Y is in the cover, then q(Y) is a valid
DC. Any branch containing X would result in a DC of the form
q(X ^ W), which is implied by q(Y) based on Axiom Augmenta-
tion, since Y ✓ X.

(iii) Lines(7-8) describe the third branching pruning strategy,
which is also based on MC. If Y is in the cover, then q(Y�i

^Y
i

) is

1503

a valid DC. Any branch containing X ◆ Y�i

[Q would result in a
DC of the form q(Y�i

^Q^W). Since Q 2 Imp(Y
i

), by applying
Axiom Transitive on these two DCs, we would get that q(Y�i

^W)
is also a valid DC, which would imply q(Y�i

^Q ^ W) based on
Axiom Augmentation. Thus this branch can be pruned.

5.4 Dividing the Space of DCs
Instead of searching for all minimal DCs at once, we divide the

space into subspaces, based on whether a DC contains a specific
predicate P1, which can be further divided according to whether a
DC contains another specific predicate P2. We start by defining ev-
idence set modulo a predicate P , i.e., EviP

I

, and we give a theorem
that reduces the problem of discovering all minimal DCs to the one
of finding all minimal set covers of EviP

I

for each P 2 P.

DEFINITION 3. Given a P 2 P, the evidence set of I modulo
P is, EviP

I

= {E � {P}|E 2 Evi
I

, P 2 E}.

THEOREM 3. q(X1 ^ . . . ^ X
n

^ P) is a valid minimal DC,
that contains predicate P , if and only if X = {X1, . . . , Xn

} is a
minimal set cover for EviP

I

.

EXAMPLE 10. Consider Evi
Emp

for the table in Example 7,
EviP1

Emp

= ;, EviP13
Emp

= {{P2, P3, P6, P7, P10, P11}}. Thus
q(P1) is a valid DC because there is nothing in the cover for
EviP1

Emp

, and q(P13 ^ P10) is a valid DC as {P10} is a cover for
EviP13

Emp

. It is evident that EviP
Emp

is much smaller than Evi
Emp

.

However, care must be taken before we start to search for mini-
mal covers for EviP

I

due to the following two problems.
First, a minimal DC containing a certain predicate P is not nec-

essarily a global minimal DC. For instance, assume that q(P,Q) is
a minimal DC containing P because {Q} is a minimal cover for
EviP

I

. However, it might not be a minimal DC because it is possi-
ble that q(Q), which is actually smaller than q(P,Q), is also a valid
DC. We call such q(P,Q) a local minimal DC w.r.t. P , and q(Q)
a global minimal DC, or a minimal DC. It is obvious that a global
minimal DC is always a local minimal DC w.r.t. each predicate in
the DC. Our goal is to generate all globally minimal DCs.

Second, assume that q(P,Q) is a global minimal DC. It is an
local minimal DC w.r.t. P and Q, thus would appear in subspaces
EviP

I

and EviQ
I

. In fact, a minimal DC ' would then appear in
|'.P res| subspaces, causing a large amount of repeated work.

DCs

+R1 �R1

+R2 �R2

+R3 �R3

Figure 2: Taxonomy Tree.

We solve the second problem first, then the solution for the first
problem comes naturally. We divide the DCs space and order all
searches in a way, such that we ensure the output of a locally mini-
mal DC is indeed global minimal, and a previously generated mini-
mal DC will never appear again in latter searches. Consider a pred-
icate space P that has only 3 predicates R1 to R3 as in Figure 2,
which presents a taxonomy of all DCs. In the first level, all DCs can
be divided into DCs containing R1, denoted as +R1, and DCs not
containing R1, denoted as �R1. Since we know how to search for
local minimal DCs containing R1, we only need to further process

DCs not containing R1, which can be divided based on containing
R2 or not, i.e., +R2 and �R2. We will divide �R2 as in Figure 2.
We can enforce searching for DCs not containing R

i

by disallow-
ing R

i

in the initial ordering of candidate predicates for minimal
cover. Since this is a taxonomy of all DCs, no minimal DCs can be
generated more than once.

We solve the first problem by performing DFS according to the
taxonomy tree in a bottom-up fashion. We start by search for DCs
containing R3, not containing R1, R2. Then we search for DCs,
containing R2, not containing R1, and we verify the resulting DC
is global minimal by checking if the reverse of the minimal cover
is a super set of DCs discovered from EviR3

I

. The process goes
on until we reach the root of the taxonomy, thus ensuring that the
results are both globally minimal and complete.

Dividing the space enables more optimization opportunities:
1. Reduction of Number of Searches. If 9P 2 P, such that

EviP
I

= ;, we identify two scenarios for Q, where DFS for EviQ
I

can be eliminated.
(i) 8Q 2 Imp(P), if EviP

I

= ;, then q(P) is a valid DC. The
search for EviQ

I

would result in a DC of the form q(Q^W), where
W represents any other set of predicates. Since Q 2 Imp(P),
applying Axiom Transitivity, we would have that q(W) is a valid
DC, which implies q(Q ^ W) based on Axiom Augmentation.

(ii) 8Q 2 Imp(P), since Q 2 Imp(P), then Q |= P . It
follows that Q ^ W |= P and therefore q(P) |=q(Q ^ W) holds.

EXAMPLE 11. Consider Evi
Emp

for the table in Example 7,
since EviP1

Emp

= ; and EviP4
Emp

= ;, then Q = {P1, P2, P3, P4}.
Thus we perform |P|� |Q| = 10 searches instead of |P| = 14.

2. Additional Branch Pruning. Since we perform DFS accord-
ing to the taxonomy tree in a bottom-up fashion, DCs discovered
from previous searches are used to prune branches in current DFS
described by Lines(9-10) of Algorithm 4.

Since Algorithm 4 is an exhaustive search for all minimal covers
for Evi

I

, Algorithm 3 produces all minimal DCs.

THEOREM 4. Algorithm 3 produces all non-trivial minimal
DCs holding on input database I .

Complexity Analysis of FASTDC. The initialization of evi-
dence sets takes O(|P| ⇤ n2). The time for each DFS search to
find all minimal covers for EviP

I

is O((1 + w
P

) ⇤ K
P

), with
w

P

being the extra effort due to imperfect search of EviP
I

, and
K

P

being the number of minimal DCs containing predicate P .
Altogether, our FASTDC algorithm has worst time complexity of
O(|P| ⇤ n2 + |P| ⇤ (1 + w

P

) ⇤K
P

).

5.5 Approximate DCs: A-FASTDC
Algorithm FASTDC consumes the whole input data set and re-

quires no violations for a DC to be declared valid. In real scenarios,
there are multiple reasons why this request may need to be relaxed:
(1) overfitting: data is dynamic and as more data becomes avail-
able, overfitting constraints on current data set can be problematic;
(2) data errors: while in general learning from unclean data is a
challenge, the common belief is that errors constitute small per-
centage of data, thus discovering constraints that hold for most of
the dataset is a common workaround [8, 15, 17].

We therefore modify the discovery statement as follows: given a
relational schema R and instance I , the approximate DCs discovery
problem for DCs is to find all valid DCs, where a DC ' is valid if
the percentage of violations of ' on I , i.e., number of violations of
' on I divided by total number of tuple pairs |I|(|I|� 1), is within
threshold ✏. For this new problem, we introduce A-FASTDC.

1504

Different tuple pairs might have the same satisfied predicate set.
For every element E in Evi

I

, we denote by count(E) the num-
ber of tuple pairs ht

x

, t
y

i such that E = SAT (ht
x

, t
y

i). For
example, count({P2, P3, P6, P8, P9, P12, P14}) = 2 for the ta-
ble in Example 7 since SAT (ht10, t9i) = SAT (ht11, t9i) =
{P2, P3, P6, P8, P9, P12, P14}.

DEFINITION 4. A set of predicates X ✓ P is an ✏-minimal
cover for Evi

I

if Sum(count(E)) ✏|I|(|I| � 1), where E 2
Evi

I

,X \ E = ;, and no subset of X has such property.

Theorem 5 transforms approximate DCs discovery problem into
the problem of searching for ✏-minimal covers for Evi

I

.

THEOREM 5. q(X1^. . .^Xn

) is a valid approximate minimal
DC if and only if X={X1, . . . , Xn

} is a ✏-minimal cover for Evi
I

.

There are two modifications for Algorithm 4 to search for ✏-
minimal covers for Evi

I

: (1) the dynamic ordering of predicates is
based on Cov(P,Evi) =

P
E2{E2Evi,P2E} count(E); and (2)

the base cases (Lines 12-17) are either when the number of vio-
lations of the corresponding DC drops below ✏|I|(|I| � 1), or the
number of violation is still above ✏|I|(|I| � 1) but there are no
more candidate predicates to include. Due to space limitations, we
present in [9] the detailed modifications for Algorithm 4 to search
for ✏-minimal covers for Evi

I

.

5.6 Constant DCs: C-FASTDC
FASTDC discovers DCs without constant predicates. However,

just like FDs may not hold on the entire dataset, thus CFDs are
more useful, we are also interested in discovering constant DCs
(CDCs). Algorithm 5 describes the procedure for CDCs discovery.
The first step is to build a constant predicate space Q (Lines 1-6)3.
After that, one direct way to discover CDCs is to include Q in the
predicate space P, and follow the same procedure in Section 5.3.
However, the number of constant predicates is linear w.r.t. the num-
ber of constants in the active domain, which is usually very large.
Therefore, we follow the approach of [15] and focus on discover-
ing ⌧ -frequent CDCs. The support for a set of constant predicates
X on I , denoted by sup(X, I), is defined to be the set of tuples
that satisfy all constant predicates in X. A set of predicates is said
to be ⌧ -frequent if |sup(X,I)|

|I| � ⌧ . A CDC ' consisting of only
constant predicates is said to be ⌧ -frequent if all strict subsets of
'.P res are ⌧ -frequent. A CDC ' consisting of constant and vari-
able predicates is said to be k-frequent if all subsets of '’s constant
predicates are ⌧ -frequent.

EXAMPLE 12. Consider c3 in Example 1, sup({t
↵

.CT =
‘Denver’}, I) = {t2, t6}, sup({t

↵

.ST 6= ‘CO’}, I) =
{t1, t3, t4, t5, t7, t8}, and sup({c3.P res}, I) = ;. Therefore, c3
is a ⌧ -frequent CDC, with 2

8 � ⌧ .

We follow an “Apriori” approach to discover ⌧ -frequent constant
predicate sets. We first identify frequent constant predicate sets of
length L1 from Q (Lines 7-15). We then generate candidate fre-
quent constant predicate sets of length m from length m�1 (Lines
22-28), and we scan the database I to get their support (Line 24). If
the support of the candidate c is 0, we have a valid CDC with only
constant predicates (Lines 12-13 and 25-26); if the support of the
candidate c is greater than ⌧ , we call FASTDC to get the variable
DCs (VDCs) that hold on sup(c, I), and we construct CDCs by
combining the ⌧ -frequent constant predicate sets and the variable
predicates of VDCs (Lines 18-21).
3We focus on two tuple CDCs with the same constant predicates
on each tuple, i.e., if t

↵

.A✓c is present in a two tuple CDC, t
�

.A✓c
is enforced by the algorithm. Therefore, we only add t

↵

.A✓c to Q.

Algorithm 5 C-FASTDC
Input: Instance I , schema R, minimal frequency requirement ⌧
Output: Constant DCs �
1: Let Q ; be the constant predicate space
2: for all A 2 R do
3: for all c 2 ADom(A) do
4: Q Q + t

↵

.A✓c, where ✓ 2 {=, 6=}
5: if A is numerical type then
6: Q Q + t

↵

.A✓c, where ✓ 2 {>,, <,�}
7: for all t 2 I do
8: if t satisfies Q then
9: sup(Q, I) sup(Q, I) + t

10: Let L1 be the set of frequent predicates
11: for all Q 2 Q do
12: if |sup(Q, I)| = 0 then
13: � �+q(Q)

14: else if |sup(Q,I)|
|I| � ⌧ then

15: L1 L1 + {Q}
16: m 2
17: while L

m�1 6= ; do
18: for all c 2 L

m�1 do
19: ⌃ FASTDC(sup(c, I),R)
20: for all ' 2 ⌃ do
21: � �+ �, �’s predicates comes from c and '
22: C

m

= {c|c = a [b ^ a 2 L
m�1 ^ b 2

S
L
k�1 ^ b /2 a}

23: for all c 2 C
m

do
24: scan the database to get the support of c, sup(c, I)
25: if |sup(c, I)| = 0 then
26: � �+ �, �’s predicates consist of predicates in c

27: else if |sup(c,I)|
|I| � ⌧ then

28: L
m

 L
m

+ c
29: m m+ 1

6. RANKING DCS
Though our FASTDC (C-FASTDC) is able to prune trivial, non-

minimal, and implied DCs, the number of DCs returned can still be
too large. To tackle this problem, we propose a scoring function to
rank DCs based on their size and their support from the data. Given
a DC ', we denote by Inter(') its interestingness score.

We recognize two different dimensions that influence Inter('):
succinctness and coverage of ', which are both defined on a scale
between 0 and 1. Each of the two scores represents a different yet
important intuitive dimension to rank discovered DCs.

Succinctness is motivated by the Occam’s razor principle. This
principle suggests that among competing hypotheses, the one that
makes fewer assumptions is preferred. It is also recognized that
overfitting occurs when a model is excessively complex [6].

Coverage is also a general principle in data mining to rank re-
sults [2]. They design scoring functions that measure the statistical
significance of the mining targets in the input data.

Given a DC ', we define the interestingness score as a linear
weighted combination of the two dimensions: Inter(') = a ⇥
Coverage(') + (1� a)⇥ Succ(').

6.1 Succinctness
Minimum description length (MDL), which measures the code

length needed to compress the data [6], is a formalism to realize
the Occam’s razor principle. Inspired by MDL, we measure the
length of a DC Len('), and we define the succinctness of a DC ',
i.e., Succ('), as the minimal possible length of a DC divided by
Len(') thus ensuring the scale of Succ(') is between 0 and 1.

Succ(') =
Min({Len(�)|8�})

Len(')

1505

One simple heuristic for Len(') is to use the number of pred-
icates in ', i.e., |'.P res|. Our proposed function computes the
length of a DC with a finer granularity than a simple counting of
the predicates. To compute it, we identify the alphabet from which
DCs are formed as A = {t

↵

, t
�

,U,B, Cons}, where U is the set of
all attributes, B is the set of all operators, and Cons are constants.
The length of ' is the number of symbols in A that appear in ':
Len(') = |{a|a 2 A, a 2 '}|. The shortest possible DC is of
length 4, such as c5, c9, and q(t

↵

.SAL 5000).

EXAMPLE 13. Consider a database schema R with two
columns A,B, with 3 DCs as follows:
c14 :q(t

↵

.A = t
�

.A), c15 :q(t
↵

.A = t
�

.B),
c16 :q(t

↵

.A = t
�

.A ^ t
↵

.B 6= t
�

.B)
Len(c14) = 4 < Len(c15) = 5 < Len(c16) = 6. Succ(c14) = 1,

Succ(c15) = 0.8, and Succ(c16)=0.67. However, if we use |'.P res|
as Len('), Len(c14) = 1 < Len(c15) = 1 < Len(c16) = 2, and
Succ(c14)=1, Succ(c15)=1, and Succ(c16)=0.5.

6.2 Coverage
Frequent itemset mining recognizes the importance of measuring

statistical significance of the mining targets [2]. In this case, the
support of an itemset is defined as the proportion of transactions in
the data that contain the itemset. Only if the support of an itemset is
above a threshold, it is considered to be frequent. CFDs discovery
also adopts such principle. A CFD is considered to be interesting
only if their support in the data is above a certain threshold, where
support is in general defined as the percentage of single tuples that
match the constants in the patten tableaux of the CFDs [8, 15].

However, the above statistical significance measures requires the
presence of constants in the mining targets. For example, the fre-
quent itemsets are a set of items, which are constants. In CFDs dis-
covery, a tuple is considered to support a CFD if that tuple matches
the constants in the CFD. Our target DCs may lack constants, and
so do FDs. Therefore, we need a novel measure for statistical sig-
nificance of discovered DCs on I that extends previous approaches.

EXAMPLE 14. Consider c2, which is a FD, in Example 1. If
we look at single tuples, just as the statistical measure for CFDs,
every tuple matches c2 since it does not have constants. However,
it is obvious that the tuple pair ht4, t7i gives more support than the
tuple pair ht2, t6i because ht4, t7i matches the left hand side of c2.

Being a more general form than CFDs, DCs have more kinds of
evidence that we exploit in order to give an accurate measure of the
statistical significance of a DC on I . An evidence of a DC ' is a pair
of tuples that does not violate ': there exists at least one predicate
in ' that is not satisfied by the tuple pair. Depending on the number
of satisfied predicates, different evidences give different support to
the statistical significance score of a DC. The larger the number of
satisfied predicates is in a piece of evidence, the more support it
gives to the interestingness score of '. A pair of tuples satisfying
k predicates is a k-evidence (kE). As we want to give higher score
to high values of k, we need a weight to reflect this intuition in the
scoring function. We introduce w(k) for kE, which is from 0 to 1,
and increases with k. In the best case, the maximum k for a DC '
is equal to |'.P res|� 1, otherwise the tuple pair violates '.

DEFINITION 5. Given a DC ':
A k-evidence (kE) for ' w.r.t. a relational instance I is a tuple

pair ht
x

, t
y

i, where k is the number of predicates in ' that are
satisfied by ht

x

, t
y

i and k |'.P res|� 1.
The weight for a kE (w(k)) for ' is w(k) = (k+1)

|'.Pres| .

EXAMPLE 15. Consider c7 in Example 3, which has 2 predi-
cates. There are two types of evidences, i.e., 0E and 1E.
ht1, t2i is a 0E since t1.FN 6= t2.FN and t1.GD = t2.GD.
ht1, t3i is a 1E since t1.FN 6= t3.FN and t1.GD 6= t3.GD.
ht1, t6i is a 1E since t1.FN = t6.FN and t1.GD = t6.GD.

Clearly, ht1, t3i and ht1, t6i have higher weight than ht1, t2i.

Given such evidence, we define Coverage(') as follows:

Coverage(') =

P|'.Pres|�1
k=0 |kE| ⇤ w(k)
P|'.Pres|�1

k=0 |kE|

The enumerator of Coverage(') counts the number of different
evidences weighted by their respective weights, which is divided by
the total number of evidences. Coverage(') gives a score between
0 and 1, with higher score indicating higher statistical significance.

EXAMPLE 16. Given 8 tuples in Table 1, we have 8*7=56 ev-
idences. Coverage(c7) = 0.80357, Coverage(c2) = 0.9821. It
can be seen that coverage score is more confident about c2, thus
reflecting our intuitive comparison between c2 and c7 in Section 1.

Coverage for CDC is calculated using the same formula, such as
Coverage(c3) = 1.0.

6.3 Rank-aware Pruning in DFS Tree
Having defined Inter, we can use it to prune branches in the

DFS tree when searching for minimal covers in Algorithm 4. We
can prune any branch in the DFS tree, if we can upper bound the
Inter score of any possible DC resulting from that branch, and the
upper bound is either (i) less than a minimal Inter threshold, or
(ii) less than the minimal Inter score of the Top-k DCs we have
already discovered. We use this pruning in Algorithm 4 (Lines 11-
12), a branch with the current path X will result in a DC ': q(X ^
W), with X known and W unknown.
Succ score is an anti-monotonic function: adding more predi-

cates increases the length of a DC, thus decreases the Succ of a
DC. Therefore we bound Succ(') by Succ(') Succ(q(X)).
However, as Coverage(') is not anti-monotonic, we cannot use
q(X) to get an upper bound for it. A direct upper bound, but not
useful bound is 1.0, so we improve it as follows. Each evidence
E or tuple pair is contributing w(k) = (k+1)

|'.Pres| to Coverage(')

with k being the number of predicates in ' that E satisfies. w(k)
can be rewritten as w(k) = 1 � l

|'.Pres| with l being the number
of predicates in ' that E does not satisfy. In addition, we know l is
greater than or equal to the number of predicates in X that E does
not satisfy; and we know that |'.P res| must be less than the |P|

2 .
Therefore, we get an upper bound for w(k) for each evidence. The
average of the upper bounds for all evidences is a valid upper bound
for Coverage('). However, to calculate this bound, we need to it-
erate over all the evidences, which can be expensive because we
need to do that for every branch in the DFS tree. Therefore, to get
a tighter bound than 1.0, we only upper bound the w(k) for a small
number of evidences4, and for the rest we set w(k) 1. We show
in the experiments how different combinations of the upper bounds
of Succ(') and of Coverage(') affect the results.

7. EXPERIMENTAL STUDY
We experimentally evaluate FASTDC, Inter function, A-

FASTDC, and C-FASTDC. Experiments are performed on a Win7
machine with QuadCore 3.4GHz cpu and 4GB RAM. The scala-
bility experiment runs on a cluster consisting of machines with the
same configuration. We use one synthetic and two real datasets.
4We experimentally identified that 1000 samples improve the upper
bound without affecting execution times.

1506

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ru
nn
in
g
Ti
me
(m
in
s)

Tuples (*1M)

FASTDC
FASTDC+7

FASTDC+20

(a) Scalability in |I| - Tax

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

Ru
nn
in
g
Ti
me
(s
ec
s)

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(b) Scalability in |P| - Tax

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

Mi
ni
ma
l
DC
s

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(c) Scalability in |P| - Tax

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 5 10 15 20 25 30 35 40 45 50

W
a
s
t
e
d

W
o
r
k

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(d) Scalability in |P| - Tax

 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.2 0.4 0.6 0.8 1

#

P
r
e
d
i
c
a
t
e
s

Percentage of Common Values

Tax
SPStock
Hospital

(e) Threshold for Joinable Columns

 0

 50

 100

 150

 200

 250

 0.5 0.55 0.6 0.65 0.7 0.75 0.8

DF
S
Ti
me
(s
ec
s)

Thre

a=0.6
a=0.5
a=0.4

(f) Ranking Function in Pruning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
-
P
r
e
c
i
s
i
o
n

Weight a

Top-5
Top-10
Top-15
Top-20

(g) G-Precision - Tax

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G-
Re
ca
ll

Weight a

Top-5
Top-10
Top-15
Top-20

(h) G-Recall - Tax

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G-
F-
Me
as
ur
e

Weight a

Top-5
Top-10
Top-15
Top-20

(i) G-F-Measure - Tax

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 8 10 12 14 16 18 20

Top-k

G-Precision
G-Recall

G-F-Measure

(j) Interestingness - Hospital

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9

R
u
n
n
i
n
g

T
i
m
e

(
s
e
c
s
)

Appro. Level (*0.000001)

Tax
SPStock
Hospital

(k) A-FASTDC Running Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

G
-
R
e
c
a
l
l

Appro. Level (*0.000001)

Tax
SPStock
Hospital

(l) Varying Approximation Level

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

G
-
R
e
c
a
l
l

Noise Level (* 0.001)

Tax
SPStock
Hospital

(m) Varying Noise Level

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

G
-
R
e
c
a
l
l

Noise in # Cols

Tax
SPStock
Hospital

(n) Skewed Noise in Columns

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

G
-
R
e
c
a
l
l

Noise in Percentage of Rows

Tax
SPStock
Hospital

(o) Skewed Noise in Rows

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ru
nn
in
g
Ti
me
 (
se
cs
)

frequency thre

Tax
SPStock
Hospital

(p) C-FASTDC Running Time

Figure 3: FASTDC scalability (a-f), ranking functions w.r.t. ⌃
g

(g-j), A-FASTDC scalability (k) and quality (l-o), C-FASTDC scalability (p).

Synthetic. We use the Tax data generator from [7]. Each record
represents an individual’s address and tax information, as in Ta-
ble 1. The address information is populated using real semantic
relationship. Furthermore, salary is synthetic, while tax rates and
tax exemptions (based on salary, state, marital status and number
of children) correspond to real life scenarios.

Real-world. We use two datasets from different Web sources5.
Hospital data is from the US government. There are 17 string

attributes, including Provider # (PN), measure code (MC) and name
(MN), phone (PHO), emergency service (ES) and has 115k tuples.

SP Stock data is extracted from historical S&P 500 Stocks. Each
record is arranged into fields representing Date, Ticker, Open Price,
High, Low, Close, and Volume of the day. There are 123k tuples.

7.1 Scalability Evaluation
We mainly use the Tax dataset to evaluate the running time of

FASTDC by varying the number of tuples |I|, and the number of
predicates |P|. We also report running time for the Hospital and the
SP Stock datasets. We show that our implication testing algorithm,
though incomplete, is able to prune a huge number of implied DCs.

5
http://data.medicare.gov, http://pages.swcp.com/stocks

Algorithms. We implemented FASTDC in Java, and we test
various optimizations techniques. We use FASTDC+M to repre-
sent running FASTDC on a cluster consisting of M machines. We
use FASTDC-DS to denote running FASTDC without dividing the
space of DCs as in Section 5.4. We use FASTDC-DO to denote
running FASTDC without dynamic ordering of predicates in the
search tree as in Section 5.3.

Exp-1: Scalability in |I|. We measure the running time in min-
utes on all 13 attributes, by varying the number of tuples (up to 1
million tuples), as reported in Figure 3a. The size of the predicate
space |P| is 50. The Y axis of Figure 3a is in log scale. We com-
pare the running time of FASTDC and FASTDC+M with number
of blocks B=2M to achieve load balancing. Figure 3a shows a
quadratic trend as the computation is dominated by the tuple pair-
wise comparison for building the evidence set. In addition, Fig-
ure 3a shows that we achieve almost linear improvement w.r.t the
number of machines on a cluster; for example, for 1M tuples, it
took 3257 minutes on 7 machines, but 1228 minutes on 20 ma-
chines. Running FASTDC on a cluster is a viable approach if the
number of tuples is too large to run on a single machine.

Exp-2: Scalability in |P|. We measure the running time in sec-
onds using 10k tuples, by varying the number of predicates through

1507

including different number of attributes in the Tax dataset, as in
Figure 3b. We compare the running time of FASTDC, FASTDC-
DS, and FASTDC-DO. The ordering of adding more attributes is
randomly chosen, and we report the average running time over 20
executions. The Y axes of Figures 3b, 3c and 3d are in log scale.
Figure 3b shows that the running time increases exponentially w.r.t.
the number of predicates. This is not surprising because the num-
ber of minimal DCs, as well as the amount of wasted work, in-
creases exponentially w.r.t. the number of predicates, as shown in
Figures 3c and 3d. The amount of wasted work is measured by the
number of times Line 15 of Algorithm 4 is hit. We estimate the
wasted DFS time as a percentage of the running time by wasted
work / (wasted work + number of minimal DCs), and it is less than
50% for all points of FASTDC in Figure3d. The number of min-
imal DCs discovered is the same for FASTDC, FASTDC-DS, and
FASTDC-DO as optimizations do not alter the discovered DCs.

Hospital has 34 predicates and it took 118 minutes to run on a
single machine using all tuples. Stock has 82 predicates and it took
593 minutes to run on a single machine using all tuples.

Exp-3: Joinable Column Analysis. Figure 3e shows the num-
ber of predicates by varying the % of common values required
to declare joinable two columns. Smaller values lead to a larger
predicate space and higher execution times. Larger values lead to
faster execution but some DCs involving joinable columns may be
missed. The number of predicates gets stable with low percentage
of common values, and with our datasets the quality of the output
is not affected when at least 30% common values are required.

Exp-4: Ranking Function in Pruning. Figure 3f shows the
DFS time taken for the Tax dataset varying the minimum Inter
score required for a DC to be in the output. The threshold has
to exceed 0.6 to have pruning power. The higher the threshold,
the more aggressive the pruning. In addition, a bigger weight for
Succ score (indicated by smaller a in Figure 3f) has more pruning
power. Although in our experiment golden DCs are not dropped by
this pruning, in general it is possible that the upper bound of Inter
for interesting DCs falls under the threshold, thus this pruning may
lead to losing interesting DCs. The other use of ranking function
for pruning is omitted since it has little gain.

Dataset # DCs Before # DCs After % Reduction
Tax 1964 741 61%

Hospital 157 42 73%
SP Stock 829 621 25%

Table 3: # DCs before and after reduction through implication.

Exp-5: Implication Reduction. The number of DCs returned
by FASTDC can be large, and many of them are implied by others.
Table 3 reports the number of DCs we have before and after impli-
cation testing for datasets with 10k tuples. To prevent interesting
DCs from being discarded, we rank them according to their Inter
function. A DC is discarded if it is implied by DCs with higher
Inter scores. It can be seen that our implication testing algorithm,
though incomplete, is able to prune a large amount of implied DCs.

7.2 Qualitative Analysis
Table 4 reports some discovered DCs, with their semantics ex-

plained in English6. We denote by ⌃
g

the golden VDCs that have
been designed by domain experts on the datasets. Specifically, ⌃

g

for Tax dataset has 8 DCs; ⌃
g

for Hospital is retrieved from [10]
and has 7 DCs; and ⌃

g

for SP Stock has 6 DCs. DCs that are
implied by ⌃

g

are also golden DCs. We denote by ⌃
s

the DCs

6All datasets, as well as their golden and discovered DCs are avail-
able at “http://da.qcri.org/dc/”.

returned by FASTDC. We define G-Precision as the percentage
of DCs in ⌃

s

that are implied by ⌃
g

, G-Recall as the number of
DCs in ⌃

s

that are implied by ⌃
g

over the total number of golden
DCs, and G-F-Measure as the harmonic mean of G-Precision and
G-Recall. In order to show the effectiveness of our ranking func-
tion, we use the golden VDCs to evaluate the two dimensions of
Inter function in Exp-6, the performance of A-FASTDC in Exp-
7. We evaluate C-FASTDC in Exp-8. However, domain experts
might not be exhaustive in designing all interesting DCs. In partic-
ular, humans have difficulties designing DCs involving constants.
We show with U -Precision(⌃

s

) the percentage of DCs in ⌃
s

that
are verified by experts to be interesting, and we report the result in
Exp-9. All experiments in this section are done on 10k tuples.

Exp-6: Evaluation of Inter score. We report in Figures 3g– 3i
G-Precision, G-Recall, and G-F-Measure for Tax, with ⌃

s

being
the Top-k DCs according to Inter by varying the weight a from 0
to 1. Every line is at its peak value when a is between 0.5 and 0.8.
Moreover, Figure 3h shows that Inter score with a = 0.6 for Top-
20 DCs has perfect recall; while it is not the case for using Succ
alone (a = 0), or using Coverage alone (a = 1). This is due to
two reasons. First, Succ might promote shorter DCs that are not
true in general, such as c7 in Example 3. Second, Coverage might
promote longer DCs that have higher coverage than shorter ones,
however, those shorter DCs might be in ⌃

g

; for example, the first
entry in Table 4 has higher coverage than q(t

↵

.AC = t
�

.AC ^
t
↵

.PH = t
�

.PH), which is actually in ⌃
g

. For Hospital, Inter
and Coverage give the same results as in Figures 3j, which are
better than Succ because golden DCs for Hospital are all FDs with
two predicates, therefore Succ has no effect on the interestingness.
For Stock, all scoring functions give the same results because its
golden DCs are simple DCs, such as q(t

↵

.Low > t
↵

.High).
This experiment shows that both succinctness and coverage are

useful in identifying interesting DCs. We combine both dimen-
sions into Inter with a = 0.5 in our experiments. Interesting DCs
usually have Coverage and Succ greater than 0.5.

Exp-7: A-FASTDC. In this experiment, we test A-FASTDC on
noisy datasets. A noise level of ↵ means that each cell has ↵ prob-
ability of being changed, with 50% chance of being changed to
a new value from the active domain and the other 50% of being
changed to a typo. For a fixed noise level ↵ = 0.001, which will in-
troduce hundreds of violating tuple pairs for golden DCs, Figure 3l
plots the G-Recall for Top-60 DCs varying the approximation level
✏. A-FASTDC discovers an increasing number of correct DCs as
we increase ✏, but, as it further increases, G-Recall drops because
when ✏ is too high, a DC whose predicates are a subset of a cor-
rect DC might get discovered, thus the correct DC will not appear.
For example, the fifth entry in Table 4 is a correct DC; however,
if ✏ is set too high, q(t

↵

.PN = t
�

.PN) would be in the output.
G-Recall for SPStock data is stable and higher than the other two
datasets because most golden DCs for SPStock data are one tuple
DCs, which are easier to discover. Finally, we examine Top-60 DCs
to discover golden DCs, which is larger than Top-20 DCs in clean
datasets. However, since there are thousands of DCs in the output,
our ranking function is still saving a lot of manual verification.

Figure 3m shows that for a fixed approximate level ✏= 4⇥ 10�6,
as we increase the amount of noise in the data, the G-Recall for
Top-60 DCs shows a small drop. This is expected because the
nosier gets the data, the harder it is to get correct DCs. However,
A-FASTDC is still able to discover golden DCs.

Figure 3n and 3o show how A-FASTDC performs when the noise
is skewed. We fix 0.002 noise level, and instead of randomly dis-
tributing them over the entire dataset, we distribute them over a cer-
tain region. Figure 3n shows that, as we distribute the noise over

1508

Dataset DC Discovered Semantics
1 Tax q(t

↵

.ST = t
�

.ST ^ t
↵

.SAL < t
�

.SAL There cannot exist two persons who live in the same state,
^t

↵

.TR > t
�

.TR) but one person earns less salary and has higher tax rate at the same time.
2 Tax q(t

↵

.CH 6= t
�

.CH ^ t
↵

.STX < t
↵

.CTX There cannot exist two persons with both having CTX higher than STX,
^t

�

.STX < t
�

.CTX) but different CH. If a person has CTX, she must have children.
3 Tax q(t

↵

.MS 6= t
�

.MS ^ t
↵

.STX = t
�

.STX) There cannot exist two persons with same STX, one person has higher STX than
^t

↵

.STX > t
↵

.CTX) CTX and they have different MS. If a person has STX, she must be single.
4 Hospital q(t

↵

.MC = t
�

.MC ^ t
↵

.MN 6= t
�

.MN) Measure code determines Measure name.
5 Hospital q(t

↵

.PN = t
�

.PN ^ t
↵

.PHO 6= t
�

.PHO) Provider number determines Phone number.
6 SP Stock q(t

↵

.Open > t
↵

.High) The open price of any stock should not be greater than its high of the day.
7 SP Stock q(t

↵

.Date = t
�

.Date ^ t
↵

.T icker = t
�

.T icker) Ticker and Date is a composite key.
8 Tax q(t

↵

.ST = ‘FL’ ^ t
↵

.ZIP < 30397) State Florida’s ZIP code cannot be lower than 30397.
9 Tax q(t

↵

.ST = ‘FL’ ^ t
↵

.ZIP � 35363) State Florida’s ZIP code cannot be higher than 35363.
10 Tax q(t

↵

.MS 6= ‘S’ ^ t
↵

.STX 6= 0) One has to be single to have any single tax exemption.
11 Hospital q(t

↵

.ES 6= ‘Yes’ ^ t
↵

.ES 6= ‘No’) The domain value of emergency service is yes or no.

Table 4: Sample DCs discovered in the datasets.

a larger number of columns, the G-Recall drops because noise in
more columns affect the discovery of more golden DCs. Figure 3o
shows G-Recall as we distribute the noise over a certain percentage
of rows; G-Recall is quite stable in this case.

Exp-8: C-FASTDC. Figure 3p reports the running time of C-
FASTDC varying minimal frequent threshold ⌧ from 0.02 to 1.0.
When ⌧ = 1.0, C-FASTDC falls back to FASTDC. The smaller
the ⌧ , the more the frequent constant predicate sets, the bigger the
running time. For the SP Stock dataset, there is no constant predi-
cate set, so it is a straight line. For the Tax data, ⌧ = 0.02 results in
many frequent constant predicate sets. Since it is not reasonable for
experts to design a set of golden CDCs, we only report U-Precision.

FASTDC C-FASTDC
Dataset k=10 k=15 k=20 k=50 k=100 k=150

Tax 1.0 0.93 0.75 1.0 1.0 1.0
Hospital 1.0 0.93 0.7 1.0 1.0 1.0
SP Stock 1.0 1.0 1.0 0 0 0

Tax-Noise 0.5 0.53 0.5 1.0 1.0 1.0
Hosp.-Noise 0.9 0.8 0.7 1.0 1.0 1.0
Stock-Noise 0.9 0.93 0.95 0 0 0

Table 5: U-Precision.
Exp-9: U-Precision. We report in Table 5 the U-Precision for

all datasets using 10k tuples, and the Top-k DCs as ⌃
s

. We run
FASTDC and C-FASTDC on clean data, as well as noisy data. For
noisy data, we insert 0.001 noise level, and we report the best result
of A-FASTDC using different approximate levels. For FASTDC on
clean data, Top-10 DCs have U-precision 1.0. In fact in Figure 3g,
Top-10 DCs never achieve perfect G-precision because FASTDC
discovers VDCs that are correct, but not easily designed by hu-
mans, such as the second and third entry in Table 4. For FASTDC
on noisy data, though the results degrade w.r.t. clean data, at least
half of the DCs in Top-20 are correct. For C-FASTDC on either
clean or noisy data, we achieve perfect U-Precision for the Tax and
the Hospital datasets up to hundreds of DCs. SP Stock data has no
CDCs. This is because C-FASTDC is able to discover many busi-
ness rules such as entries 8-10 in Table 4, domain constraints such
as entry 11 in Table 4, and CFDs such as c3 in Example 1.

8. CONCLUSION AND FUTURE WORK
Denial Constraints are a useful language to detect violations and

enforce the correct application semantics. We have presented static
analysis for DCs, including three sound axioms, and a linear im-
plication testing algorithm. We also developed a DCs discovery
algorithm (FASTDC), as well as A-FASTDC and C-FASTDC. In
addition, experiments shown that our interestingness score is ef-
fective in identifying meaningful DCs. In the future, we want to

investigate sampling techniques to alleviate the quadratic complex-
ity of computing the evidence set.

9. ACKNOWLEDGMENTS
The authors thank the reviewers for their useful comments.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association

rules between sets of items in large databases. In SIGMOD, 1993.
[3] M. Baudinet, J. Chomicki, and P. Wolper. Constraint-generating

dependencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.
[4] O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai, T. E. Larson,

D. Menestrina, and S. Thavisomboon. D-swoosh: A family of
algorithms for generic, distributed entity resolution. In ICDCS, 2007.

[5] L. E. Bertossi. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers, 2011.

[6] C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag, 2006.

[7] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for data cleaning. ICDE, 2007.

[8] F. Chiang and R. J. Miller. Discovering data quality rules. PVLDB,
1(1):1166–1177, 2008.

[9] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
Tech. Report QCRI2013-1 at http://da.qcri.org/dc/.

[10] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting
violations into context. In ICDE, 2013.

[11] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In
SIGMOD, pages 240–251, 2002.

[12] D. Deroos, C. Eaton, G. Lapis, P. Zikopoulos, and T. Deutsch.
Understanding Big Data: Analytics for Enterprise Class Hadoop and
Streaming Data. McGraw-Hill, 2011.

[13] W. Fan and F. Geerts. Foundations of Data Quality Management.
Morgan & Claypool Publishers, 2012.

[14] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional
functional dependencies for capturing data inconsistencies. ACM
Trans. Database Syst., 33(2), 2008.

[15] W. Fan, F. Geerts, J. Li, and M. Xiong. Discovering conditional
functional dependencies. IEEE TKDE, 23(5):683–698, 2011.

[16] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. PVLDB, 1(1):376–390, 2008.

[17] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen. TANE: An
efficient algorithm for discovering functional and approximate
dependencies. Comput. J., 42(2):100–111, 1999.

[18] I. F. Ilyas, V. Markl, P. J. Haas, P. Brown, and A. Aboulnaga.
CORDS: Automatic discovery of correlations and soft functional
dependencies. In SIGMOD, pages 647–658, 2004.

[19] C. M. Wyss, C. Giannella, and E. L. Robertson. FastFDs: A
heuristic-driven, depth-first algorithm for mining functional
dependencies from relation instances. In DaWaK, 2001.

1509

