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sults on learning with lopsided misclassi�ca-tion noise, which we believe may be of inde-pendent interest.1 INTRODUCTIONIn many machine learning settings, unlabeled examplesare signi�cantly easier to come by than labeled ones[6, 17]. One example of this is web-page classi�cation.Suppose that we want a program to electronically visitsome web site and download all the web pages of interestto us, such as all the CS faculty member pages, or allthe course home pages at some university [3]. To trainsuch a system to automatically classify web pages, onewould typically rely on hand labeled web pages. Theselabeled examples are fairly expensive to obtain becausethey require human e�ort. In contrast, the web hashundreds of millions of unlabeled web pages that can beinexpensively gathered using a web crawler. Therefore,we would like our learning algorithm to be able to takeas much advantage of the unlabeled data as possible.This web-page learning problem has an interestingadditional feature. Each example in this domain cannaturally be described using two di�erent \kinds" of in-formation. One kind of information about a web pageis the text appearing on the document itself. A secondkind of information is the anchor text attached to hy-perlinks pointing to this page, from other pages on theweb.The two problem characteristics mentioned above(availability of cheap unlabeled data, and the existenceof two di�erent, somewhat redundant sources of infor-mation about examples) suggest the following learningstrategy. Using an initial small set of labeled examples,�nd weak predictors based on each kind of information;for instance, we might �nd that the phrase \researchinterests" on a web page is a weak indicator that thepage is a faculty home page, and we might �nd that thephrase \my advisor" on a link is an indicator that thepage being pointed to is a faculty page. Then, attemptto bootstrap from these weak predictors using unlabeleddata. For instance, we could search for pages pointedto with links having the phrase \my advisor" and usethem as \probably positive" examples to further train alearning algorithm based on the words on the text page,



and vice-versa. We call this type of bootstrapping co-training, and it has a close connection to bootstrappingfrom incomplete data in the Expectation-Maximizationsetting; see, for instance, [7, 15]. The question this raisesis: is there any reason to believe co-training will help?Our goal is to address this question by developing aPAC-style theoretical framework to better understandthe issues involved in this approach. In the process, weprovide new results on learning in the presence of lop-sided classi�cation noise. We also give some preliminaryempirical results on classifying university web pages (seeSection 6) that are encouraging in this context.More broadly, the general question of how unlabeledexamples can be used to augment labeled data seems aslippery one from the point of view of standard PAC as-sumptions. We address this issue by proposing a notionof \compatibility" between a data distribution and atarget function (Section 2) and discuss how this relatesto other approaches to combining labeled and unlabeleddata (Section 3).2 A FORMAL FRAMEWORKWe de�ne the co-training model as follows. We have aninstance space X = X1 �X2, where X1 and X2 corre-spond to two di�erent \views" of an example. That is,each example x is given as a pair (x1; x2). We assumethat each view in itself is su�cient for correct classi�-cation. Speci�cally, let D be a distribution over X, andlet C1 and C2 be concept classes de�ned over X1 andX2, respectively. What we assume is that all labels onexamples with non-zero probability under D are consis-tent with some target function f1 2 C1, and are alsoconsistent with some target function f2 2 C2. In otherwords, if f denotes the combined target concept over theentire example, then for any example x = (x1; x2) ob-served with label `, we have f(x) = f1(x1) = f2(x2) = `.This means in particular that D assigns probability zeroto any example (x1; x2) such that f1(x1) 6= f2(x2).Why might we expect unlabeled data to be useful foramplifying a small labeled sample in this context? Wecan think of this question through the lens of the stan-dard PAC supervised learning setting as follows. Fora given distribution D over X, we can talk of a targetfunction f = (f1; f2) 2 C1 � C2 as being \compatible"with D if it satis�es the condition that D assigns prob-ability zero to the set of examples (x1; x2) such thatf1(x1) 6= f2(x2). That is, the pair (f1; f2) is compatiblewith D if f1, f2, and D are legal together in our frame-work. Notice that even if C1 and C2 are large conceptclasses with high complexity in, say, the VC-dimensionmeasure, for a given distribution D the set of compati-ble target concepts might be much simpler and smaller.Thus, one might hope to be able to use unlabeled ex-amples to gain a better sense of which target conceptsare compatible, yielding information that could reducethe number of labeled examples needed by a learningalgorithm. In general, we might hope to have a trade-o� between the number of unlabeled examples and thenumber of labeled examples needed.To illustrate this idea, suppose that X1 = X2 =

Figure 1: Graphs GD and GS . Edges represent exampleswith non-zero probability under D. Solid edges representexamples observed in some �nite sample S. Notice thatgiven our assumptions, even without seeing any labels thelearning algorithm can deduce that any two examples be-longing to the same connected component in GS musthave the same classi�cation.f0; 1gn and C1 = C2 = \conjunctions over f0; 1gn."Say that it is known that the �rst coordinate is rele-vant to the target concept f1 (i.e., if the �rst coordinateof x1 is 0, then f1(x1) = 0 since f1 is a conjunction).Then, any unlabeled example (x1; x2) such that the �rstcoordinate of x1 is zero can be used to produce a (la-beled) negative example x2 of f2. Of course, if D is an\unhelpful" distribution, such as one that has nonzeroprobability only on pairs where x1 = x2, then this maygive no useful information about f2. However, if x1 andx2 are not so tightly correlated, then perhaps it does.For instance, suppose D is such that x2 is conditionallyindependent of x1 given the classi�cation. In that case,given that x1 has its �rst component set to 0, x2 is nowa random negative example of f2, which could be quiteuseful. We explore a generalization of this idea in Sec-tion 5, where we show that any weak hypothesis canbe boosted from unlabeled data if D has such a condi-tional independence property and if the target class islearnable with random classi�cation noise.In terms of other PAC-style models, we can think ofour setting as somewhat in between the uniform distri-bution model, in which the distribution is particularlyneutral, and teacher models [8, 10] in which examplesare being supplied by a helpful oracle.2.1 A BIPARTITE GRAPHREPRESENTATIONOne way to look at the co-training problem is to viewthe distribution D as a weighted bipartite graph, whichwe write as GD(X1; X2), or just GD if X1 and X2 areclear from context. The left-hand side of GD has onenode for each point in X1 and the right-hand side hasone node for each point in X2. There is an edge (x1; x2)if and only if the example (x1; x2) has non-zero prob-ability under D. We give this edge a weight equal toits probability. For convenience, remove any vertex of



degree 0, corresponding to those views having zero prob-ability. See Figure 1.In this representation, the \compatible" concepts inC are exactly those corresponding to a partition of thisgraph with no cross-edges. One could also reasonablyde�ne the extent to which a partition is not compati-ble as the weight of the cut it induces in G. In otherwords, the degree of compatibility of a target functionf = (f1; f2) with a distribution D could be de�ned asa number 0 � p � 1 where p = 1 � PrD[(x1; x2) :f1(x1) 6= f2(x2)]. In this paper, we assume full compat-ibility (p = 1).Given a set of unlabeled examples S, we can simi-larly de�ne a graph GS as the bipartite graph havingone edge (x1; x2) for each (x1; x2) 2 S. Notice thatgiven our assumptions, any two examples belonging tothe same connected component in S must have the sameclassi�cation. For instance, two web pages with the ex-act same content (the same representation in the X1view) would correspond to two edges with the same leftendpoint and would therefore be required to have thesame label.3 A HIGH LEVEL VIEW ANDRELATION TO OTHERAPPROACHESIn its most general form, what we are proposing to addto the PAC model is a notion of compatibility betweena concept and a data distribution. If we then postulatethat the target concept must be compatible with the dis-tribution given, this allows unlabeled data to reduce theclass C to the smaller set C 0 of functions in C that arealso compatible with what is known about D. (We canthink of this as intersecting C with a concept class CDassociated with D, which is partially known through theunlabeled data observed.) For the co-training scenario,the speci�c notion of compatibility given in the previoussection is especially natural; however, one could imag-ine postulating other forms of compatibility in othersettings.We now discuss relations between our model andothers that have been used for analyzing how to combinelabeled and unlabeled data.One standard setting in which this problem has beenanalyzed is to assume that the data is generated accord-ing to some simple known parametric model. Underassumptions of this form, Castelli and Cover [1, 2] pre-cisely quantify relative values of labeled and unlabeleddata for Bayesian optimal learners. The EM algorithm,widely used in practice for learning from data with miss-ing information, can also be analyzed in this type of set-ting [5]. For instance, a common speci�c assumption isthat the positive examples are generated according to ann-dimensional Gaussian D+ centered around the point�+, and negative examples are generated according toGaussian D� centered around the point ��, where �+and �� are unknown to the learning algorithm. Exam-ples are generated by choosing either a positive pointfrom D+ or a negative point from D�, each with proba-

bility 1=2. In this case, the Bayes-optimal hypothesis isthe linear separator de�ned by the hyperplane bisectingand orthogonal to the line segment �+��.This parametric model is less rigid than our \PACwith compatibility" setting in the sense that it incorpo-rates noise: even the Bayes-optimal hypothesis is not aperfect classi�er. On the other hand, it is signi�cantlymore restrictive in that the underlying probability dis-tribution is e�ectively forced to commit to the targetconcept. For instance, in the above case of two Gaus-sians, if we consider the class C of all linear separators,then really only two concepts in C are \compatible"with the underlying distribution on unlabeled exam-ples: namely, the Bayes-optimal one and its negation.In other words, if we knew the underlying distribution,then there are only two possible target concepts left.Given this view, it is not surprising that unlabeled datacan be so helpful under this set of assumptions. Ourproposal of a compatibility function between a conceptand a probability distribution is an attempt to morebroadly consider distributions that do not completelycommit to a target function and yet are not completelyuncommitted either.Another approach to using unlabeled data, given byYarowsky [17] in the context of the \word sense dis-ambiguation" problem, is much closer in spirit to co-training, and can be nicely viewed in our model. Theproblem Yarowsky considers is the following. Manywords have several quite di�erent dictionary de�nitions.For instance, \plant" can mean a type of life form ora factory. Given a text document and an instance ofthe word \plant" in it, the goal of the algorithm is todetermine which meaning is intended. Yarowsky [17]makes use of unlabeled data via the following observa-tion: within any �xed document, it is highly likely thatall instances of a word like \plant" have the same in-tended meaning, whichever meaning that happens to be.He then uses this observation, together with a learningalgorithm that learns to make predictions based on localcontext, to achieve good results with only a few labeledexamples and many unlabeled ones.We can think of Yarowsky's approach in the contextof co-training as follows. Each example (an instance ofthe word \plant") is described using two distinct rep-resentations. The �rst representation is the unique-IDof the document that the word is in. The second rep-resentation is the local context surrounding the word.(For instance, in the bipartite graph view, each nodeon the left represents a document, and its degree is thenumber of instances of \plant" in that document; eachnode on the right represents a di�erent local context.)The assumptions that any two instances of \plant" inthe same document have the same label, and that localcontext is also su�cient for determining a word's mean-ing, are equivalent to our assumption that all examplesin the same connected component must have the sameclassi�cation.



4 ROTE LEARNINGIn order to get a feeling for the co-training model, weconsider in this section the simple problem of rote learn-ing. In particular, we consider the case that C1 = 2X1and C2 = 2X2 , so all partitions consistent with D arepossible, and we have a learning algorithm that simplyoutputs \I don't know" on any example whose label itcannot deduce from its training data and the compat-ibility assumption. Let jX1j = jX2j = N , and imaginethat N is a \medium-size" number in the sense thatgathering O(N ) unlabeled examples is feasible but la-beling them all is not.1 In this case, given just a sin-gle view (i.e., just the X1 portion), we might need tosee 
(N ) labeled examples in order to cover a substan-tial fraction of D. Speci�cally, the probability that the(m + 1)st example has not yet been seen isXx12X1 PrD[x1](1� PrD[x1])m:If, for instance, each example has the same probabilityunder D, our rote-learner will need 
(N ) labeled exam-ples in order to achieve low error.On the other hand, the two views we have of eachexample allow a potentially much smaller number of la-beled examples to be used if we have a large unlabeledsample. For instance, suppose at one extreme that ourunlabeled sample contains every edge in the graph GD(every example with nonzero probability). In this case,our rote-learner will be con�dent about the label of anew example exactly when it has previously seen a la-beled example in the same connected component of GD.Thus, if the connected components in GD are c1; c2; : : :,and have probability mass P1; P2; : : :, respectively, thenthe probability that given m labeled examples, the la-bel of an (m + 1)st example cannot be deduced by thealgorithm is just Xcj2GD Pj(1� Pj)m: (1)For instance, if the graph GD has only k connectedcomponents, then we can achieve error � with at mostO(k=�) examples.More generally, we can use the two views to achievea tradeo� between the number of labeled and unlabeledexamples needed. If we consider the graph GS (thegraph with one edge for each observed example), wecan see that as we observe more unlabeled examples,the number of connected components will drop as com-ponents merge together, until �nally they are the sameas the components of GD. Furthermore, for a given setS, if we now select a random subset of m of them to la-bel, the probability that the label of a random (m+1)stexample chosen from the remaining portion of S cannotbe deduced by the algorithm isXcj2GS sj�jSj�sjm �� jSjm+1� ;1To make this more plausible in the context of web pages,think of x1 as not the document itself but rather some smallset of attributes of the document.

where sj is the number of edges in component cj of S.If m� jSj, the above formula is approximatelyXcj2GS sjjSj �1� sjjSj�m ;in analogy to Equation 1.In fact, we can use recent results in the study of ran-dom graph processes [11] to describe quantitatively howwe expect the components in GS to converge to those ofGD as we see more unlabeled examples, based on prop-erties of the distribution D. For a given connected com-ponent H of GD, let �H be the value of the minimumcut of H (the minimum, over all cuts of H, of the sumof the weights on the edges in the cut). In other words,�H is the probability that a random example will crossthis speci�c minimum cut. Clearly, for our sample S tocontain a spanning tree of H, and therefore to includeall of H as one component, it must have at least oneedge in that minimum cut. Thus, the expected numberof unlabeled samples needed for this to occur is at least1=�H. Of course, there are many cuts in H and to havea spanning tree one must include at least one edge fromevery cut. Nonetheless, Karger [11] shows that this isnearly su�cient as well. Speci�cally, Theorem 2.1 of [11]shows that O((logN )=�H) unlabeled samples are su�-cient to ensure that a spanning tree is found with highprobability.2 So, if � = minHf�Hg, then O((logN )=�)unlabeled samples are su�cient to ensure that the num-ber of connected components in our sample is equal tothe number in D, minimizing the number of labeled ex-amples needed.For instance, suppose N=2 points in X1 are posi-tive and N=2 are negative, and similarly for X2, andthe distribution D is uniform subject to placing zeroprobability on illegal examples. In this case, each legalexample has probability p = 2=N2. To reduce the ob-served graph to two connected components we do notneed to see all O(N2) edges, however. All we need aretwo spanning trees. The minimum cut for each compo-nent has value pN=2, so by Karger's result, O(N logN )unlabeled examples su�ce. (This simple case can beanalyzed easily from �rst principles as well.)More generally, we can bound the number of con-nected components we expect to see (and thus the num-ber of labeled examples needed to produce a perfect hy-pothesis if we imagine the algorithm is allowed to selectwhich unlabeled examples will be labeled) in terms ofthe number of unlabeled examples mu as follows. For a2This theorem is in a model in which each edge e in-dependently appears in the observed graph with probabilitympe, where pe is the weight of edge e and m is the ex-pected number of edges chosen. (Speci�cally, Karger is con-cerned with the network reliability problem in which eachedge goes \down" independently with some known probabil-ity and you want to know the probability that connectivityis maintained.) However, it is not hard to convert this to thesetting we are concerned with, in which a �xed m samplesare drawn, each independently from the distribution de�nedby the pe's. In fact, Karger in [12] handles this conversionformally.



given � < 1, consider a greedy process in which anycut of value less that � in GD has all its edges re-moved, and this process is then repeated until no con-nected component has such a cut. Let NCC(�) be thenumber of connected components remaining. If we let� = c log(N )=mu, where c is the constant from Karger'stheorem, and if mu is large enough so that there areno singleton components (components having no edges)remaining after the above process, then NCC (�) is anupper bound on the expected number of labeled exam-ples needed to cover all of D. On the other hand, ifwe let � = 1=(2mu), then 12NCC(�) is a lower boundsince the above greedy process must have made at mostNCC � 1 cuts, and for each one the expected number ofedges crossing the cut is at most 1=2.5 PAC LEARNING IN LARGEINPUT SPACESIn the previous section we saw how co-training couldprovide a tradeo� between the number of labeled andunlabeled examples needed in a setting where jXj isrelatively small and the algorithm is performing rote-learning. We now move to the more di�cult case wherejXj is large (e.g., X1 = X2 = f0; 1gn) and our goal is tobe polynomial in the description length of the examplesand the target concept.What we show is that given a conditional indepen-dence assumption on the distribution D, if the targetclass is learnable from random classi�cation noise in thestandard PAC model, then any initial weak predictorcan be boosted to arbitrarily high accuracy using unla-beled examples only by co-training.Speci�cally, we say that target functions f1; f2 anddistribution D together satisfy the conditional indepen-dence assumption if, for any �xed (x̂1; x̂2) 2 X of non-zero probability,Pr(x1;x2)2D hx1 = x̂1 j x2 = x̂2i= Pr(x1;x2)2D hx1 = x̂1 j f2(x2) = f2(x̂2)i;and similarly,Pr(x1;x2)2D hx2 = x̂2 j x1 = x̂1i= Pr(x1;x2)2D hx2 = x̂2 j f1(x1) = f1(x̂1)i:In other words, x1 and x2 are conditionally indepen-dent given the label. For instance, we are assumingthat the words on a page P and the words on hyper-links pointing to P are independent of each other whenconditioned on the classi�cation of P . This seems to bea somewhat plausible starting point given that the pageitself is constructed by a di�erent user than the one whomade the link. On the other hand, Theorem 1 below canbe viewed as showing why this is perhaps not really soplausible after all.33Using our bipartite graph view from Section 2.1, it is

In order to state the theorem, we de�ne a \weakly-useful predictor" h of a function f to be a function suchthat1. PrDhh(x) = 1i � �, and2. PrDhf(x) = 1jh(x) = 1i � PrDhf(x) = 1i+ �,for some � > 1=poly(n). For example, seeing the word\handouts" on a web page would be a weakly-useful pre-dictor that the page is a course homepage if (1) \hand-outs" appears on a non-negligible fraction of pages, and(2) the probability a page is a course homepage giventhat \handouts" appears is non-negligibly higher thanthe probability it is a course homepage given that theword does not appear. If f is unbiased in the sense thatPrD(f(x) = 1) = PrD(f(x) = 0) = 1=2, then this is thesame as the usual notion of a weak predictor, namelyPrD(h(x) = f(x)) � 1=2 + 1=poly(n). If f is not un-biased, then we are requiring h to be noticeably betterthan simply predicting \all negative" or \all positive".It is worth noting that a weakly-useful predictor isonly possible if both PrD(f(x) = 1) and PrD(f(x) =0) are at least 1=poly(n). For instance, condition (2)implies that PrD(f(x) = 0) � � and conditions (1) and(2) together imply that PrD(f(x) = 1) � �2.Theorem 1 If C2 is learnable in the PAC model withclassi�cation noise, and if the conditional independenceassumption is satis�ed, then (C1; C2) is learnable in theCo-training model from unlabeled data only, given aninitial weakly-useful predictor h(x1).Thus, for instance, the conditional independence as-sumption implies that any concept class learnable in theStatistical Query model [13] is learnable from unlabeleddata and an initial weakly-useful predictor.Before proving the theorem, it will be convenient tode�ne a variation on the standard classi�cation noisemodel where the noise rate on positive examples maybe di�erent from the noise rate on negative examples.Speci�cally, let (�; �) classi�cation noise be a settingin which true positive examples are incorrectly labeled(independently) with probability �, and true negativeexamples are incorrectly labeled (independently) withprobability �. Thus, this extends the standard modelin the sense that we do not require � = �. The goalof a learning algorithm in this setting is still to producea hypothesis that is �-close to the target function withrespect to non-noisy data. In this case we have thefollowing lemma:Lemma 1 If concept class C is learnable in the stan-dard classi�cation noise model, then C is also learnableeasy to see that for this distribution D, the only \compati-ble" target functions are the pair (f1; f2), its negation, andthe all-positive and all-negative functions (assuming D doesnot give probability zero to any example). Theorem 1 can beinterpreted as showing how, given access to D and a slightbias towards (f1; f2), the unlabeled data can be used in poly-nomial time to discover this fact.



with (�; �) classi�cation noise so long as � + � < 1.Running time is polynomial in 1=(1 � � � �) and 1=p̂,where p̂ = min[PrD(f(x) = 1);PrD(f(x) = 0)], where fis the non-noisy target function.Proof. First, suppose � and � are known to the learningalgorithm. Without loss of generality, assume � < �.To learn C with (�; �) noise, simply ip each positivelabel to a negative label independently with probability(���)=(�+(1��)). This results in standard classi�ca-tion noise with noise rate � = �=(� +(1��)). One canthen run an algorithm for learning C in the presenceof standard classi�cation noise, which by de�nition willhave running time polynomial in 11�2� = 1+(���)1���� .If � and � are not known, this can be dealt with bymaking a number of guesses and then evaluating themon a separate test set, as described below. It will turnout that it is the evaluation step which requires the lowerbound p̂. For instance, to take an extreme example, itis impossible to distinguish the case that f(x) is alwayspositive and � = 0:7 from the case that f(x) is alwaysnegative and � = 0:3.Speci�cally, if � and � are not known, we proceed asfollows. Given a data set S of m examples of which m+are labeled positive, we create m+1 hypotheses, wherehypothesis hi for 0 � i � m+ is produced by ipping thelabels on i random positive examples in S and runningthe classi�cation noise algorithm, and hypothesis hi form+ < i � m is produced by ipping the labels on i�m+random negative examples in S and then running thealgorithm. We expect at least one hi to be good sincethe procedure when � and � are known can be viewed asa probability distribution over these m+1 experiments.Thus, all we need to do now is to select one of thesehypotheses using a separate test set.We choose a hypothesis by selecting the hi that min-imizes the quantityE(hi) = Pr[hi(x)=1j`(x)=0]+ Pr[hi(x)=0j`(x)=1]where `(x) is the observed (noisy) label given to x.4 Astraightforward calculation shows that E(hi) solves toE(hi) = 1� (1� �� �)p(1 � p)(1 � E 0(hi))Pr[`(x) = 1] � Pr[`(x) = 0] ;where p = Pr[f(x) = 1], and whereE 0(hi) = Pr[hi(x)=1jf(x)=0] + Pr[hi(x)=0jf(x)=1]:In other words, the quantity E(hi), which we canestimate from noisy examples, is linearly related to thequantity E 0(hi), which is a measure of the true errorof hi. Selecting the hypothesis hi which minimizes theobserved value of E(hi) over a su�ciently large sample(sample size polynomial in 1(1����)p(1�p)) will result in4Note that E(hi) is not the same as the empirical error ofhi, which is Pr[hi(x) = 1j`(x) = 0]�Pr[`(x) = 0]+Pr[hi(x) =0j`(x) = 1] � Pr[`(x) = 1]. Minimizing empirical error is notguaranteed to succeed; for instance, if � = 2=3 and � = 0then the empirical error of the \all negative" hypothesis ishalf the empirical error of the true target concept.

a hypothesis that approximately minimizes E 0(hi). Fur-thermore, if one of the hi has the property that its trueerror is su�ciently small as a function of min(p; 1� p),then approximately minimizing E 0(hi) will also approx-imately minimize true error.The (�; �) classi�cation noise model can be thoughtof as a kind of constant-partition classi�cation noise [4].However, the results in [4] require that each noise ratebe less than 1=2. We will need the stronger statementpresented here, namely that it su�ces to assume onlythat the sum of � and � is less than 1.Proof of Theorem 1. Let f(x) be the target conceptand p = PrD(f(x) = 1) be the probability that a ran-dom example from D is positive. Let q = PrD(f(x) =1jh(x1) = 1) and let c = PrD(h(x1) = 1). So,PrDhh(x1) = 1jf(x) = 1i= PrD�f(x) = 1jh(x1) = 1�PrD�h(x1) = 1�PrD�f(x) = 1�= qcp (2)and PrDhh(x1) = 1jf(x) = 0i = (1� q)c1� p : (3)By the conditional independence assumption, for a ran-dom example x = (x1; x2), h(x1) is independent of x2given f(x). Thus, if we use h(x1) as a noisy label ofx2, then this is equivalent to (�; �)-classi�cation noise,where � = 1 � qc=p and � = (1 � q)c=(1 � p) usingequations (2) and (3). The sum of the two noise ratessatis�es�+ � = 1� qcp + (1� q)c1� p = 1� c� q � pp(1� p)� :By the assumption that h is a weakly-useful predictor,we have c � � and q � p � �. Therefore, this quantityis at most 1 � �2=(p(1 � p)), which is at most 1 � 4�2.Applying Lemma 1, we have the theorem.One point to make about the above analysis is that,even with conditional independence, minimizing empir-ical error over the noisy data (as labeled by weak hy-pothesis h) may not correspond to minimizing true er-ror. This is dealt with in the proof of Lemma 1 by mea-suring error as if the positive and negative regions hadequal weight. In the experiment described in Section 6below, this kind of reweighting is handled by parame-ters \p" and \n" (setting them equal would correspondto the error measure in the proof of Lemma 1) and em-pirically the performance of the algorithm was sensitiveto this issue.5.1 RELAXING THE ASSUMPTIONSSo far we have made the fairly stringent assumptionthat we are never shown examples (x1; x2) such thatf1(x1) 6= f2(x2) for target function (f1; f2). We now



show that so long as conditional independence is main-tained, this assumption can be signi�cantly weakenedand still allow one to use unlabeled data to boost aweakly-useful predictor. Intuitively, this is not so sur-prising because the proof of Theorem 1 involves a reduc-tion to the problem of learning with classi�cation noise;relaxing our assumptions should just add to this noise.Perhaps what is surprising is the extent to which theassumptions can be relaxed.Formally, for a given target function pair (f1; f2) anddistribution D over pairs (x1; x2), let us de�ne:p11 = PrD[f1(x1) = 1; f2(x2) = 1];p10 = PrD[f1(x1) = 1; f2(x2) = 0];p01 = PrD[f1(x1) = 0; f2(x2) = 1];p00 = PrD[f1(x1) = 0; f2(x2) = 0]:Previously, we assumed that p10 = p01 = 0 (and im-plicitly, by de�nition of a weakly-useful predictor, thatneither p11 nor p00 was extremely close to 0). We nowreplace this with the assumption thatp11p00 > p01p10 + � (4)for some � > 1=poly(n). We maintain the conditionalindependence assumption, so we can view the underly-ing distribution as with probability p11 selecting a ran-dom positive x1 and an independent random positivex2, with probability p10 selecting a random positive x1and an independent random negative x2, and so on.To fully specify the scenario we need to say some-thing about the labeling process; for instance, what isthe probability that an example (x1; x2) is labeled posi-tive given that f1(x1) = 1 and f2(x2) = 0. However, wewill �nesse this issue by simply assuming (as in the pre-vious section) that we have somehow obtained enoughinformation from the labeled data to obtain a weakly-useful predictor h of f1, and from then on we care onlyabout the unlabeled data. In particular, we get the fol-lowing theorem.Theorem 2 Let h(x1) be a hypothesis with� = PrD[h(x1) = 0jf1(x1) = 1]and � = PrD[h(x1) = 1jf1(x1) = 0]:Then,PrD[h(x1) = 0jf2(x2) = 1] + PrD[h(x1) = 1jf2(x2) = 0]= 1� (1� �� �)(p11p00 � p01p10)(p11 + p01)(p10 + p00) :In other words, if h produces usable (�; �) classi�cationnoise for f1 (usable in the sense that �+ � < 1) then halso produces usable (�0; �0) classi�cation noise for f2,where 1��0��0 is at least (1����)(p11p00�p01p10).Our assumption (4) ensures that this last quantity isnot too small.

Proof. The proof is just straightforward calculation.PrD[h(x1) = 0jf2(x2) = 1] + PrD[h(x1) = 1jf2(x2) = 0]= p11�+ p01(1� �)p11 + p01 + p10(1� �) + p00�p10 + p00= 1� p11(1� �) + p01�p11 + p01 + p10(1� �) + p00�p10 + p00= 1� (1� �� �)(p11p00 � p01p10)(p11 + p01)(p10 + p00)6 EXPERIMENTSIn order to test the idea of co-training, we applied it tothe problem of learning to classify web pages. This par-ticular experiment was motivated by a larger researche�ort [3] to apply machine learning to the problem ofextracting information from the world wide web.The data for this experiment5 consists of 1051 webpages collected from Computer Science department websites at four universities: Cornell, University of Wash-ington, University ofWisconsin, and University of Texas.These pages have been hand labeled into a number ofcategories. For our experiments we considered the cat-egory \course home page" as the target function; thus,course home pages are the positive examples and allother pages are negative examples. In this dataset, 22%of the web pages were course pages.For each example web page x, we considered x1 tobe the bag (multi-set) of words appearing on the webpage, and x2 to be the bag of words underlined in alllinks pointing into the web page from other pages inthe database. Classi�ers were trained separately for x1and for x2, using the naive Bayes algorithm. We willrefer to these as the page-based and the hyperlink-basedclassi�ers, respectively. This naive Bayes algorithm hasbeen empirically observed to be successful for a varietyof text-categorization tasks [14].The co-training algorithm we used is described inTable 1. Given a set L of labeled examples and a setU of unlabeled examples, the algorithm �rst creates asmaller pool U 0 containing u unlabeled examples. Itthen iterates the following procedure. First, use L totrain two distinct classi�ers: h1 and h2. h1 is a naiveBayes classi�er based only on the x1 portion of the in-stance, and h2 is a naive Bayes classi�er based only onthe x2 portion. Second, allow each of these two classi-�ers to examine the unlabeled set U 0 and select the pexamples it most con�dently labels as positive, and then examples it most con�dently labels negative. We usedp = 1 and n = 3. Each example selected in this way isadded to L, along with the label assigned by the classi-�er that selected it. Finally, the pool U 0 is replenishedby drawing 2p+2n examples from U at random. In ear-lier implementations of Co-training, we allowed h1 andh2 to select examples directly from the larger set U , buthave obtained better results when using a smaller poolU 0, presumably because this forces h1 and h2 to select5This data is available at http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/



Given:� a set L of labeled training examples� a set U of unlabeled examplesCreate a pool U 0 of examples by choosing u examples at random from ULoop for k iterations:Use L to train a classi�er h1 that considers only the x1 portion of xUse L to train a classi�er h2 that considers only the x2 portion of xAllow h1 to label p positive and n negative examples from U 0Allow h2 to label p positive and n negative examples from U 0Add these self-labeled examples to LRandomly choose 2p+ 2n examples from U to replenish U 0Table 1: The Co-Training algorithm. In the experiments reported here both h1 and h2 were trained using a naive Bayesalgorithm, and algorithm parameters were set to p = 1, n = 3, k = 30 and u = 75.examples that are more representative of the underlyingdistribution D that generated U .Experiments were conducted to determine whetherthis co-training algorithm could successfully use the un-labeled data to outperform standard supervised trainingof naive Bayes classi�ers. In each experiment, 263 (25%)of the 1051 web pages were �rst selected at random asa test set. The remaining data was used to generate alabeled set L containing 3 positive and 9 negative ex-amples drawn at random. The remaining examples thatwere not drawn for L were used as the unlabeled poolU . Five such experiments were conducted using di�er-ent training/test splits, with Co-training parameters setto p = 1, n = 3, k = 30 and u = 75.To compare Co-training to supervised training, wetrained naive Bayes classi�ers that used only the 12 la-beled training examples in L. We trained a hyperlink-based classi�er and a page-based classi�er, just as forco-training. In addition, we de�ned a third combinedclassi�er, based on the outputs from the page-basedand hyperlink-based classi�er. In keeping with the naiveBayes assumption of conditional independence, this com-bined classi�er computes the probabilityP (cjjx) of classcj given the instance x = (x1; x2) by multiplying theprobabilities output by the page-based and hyperlink-based classi�ers:P (cjjx) P (cjjx1)P (cjjx2)The results of these experiments are summarized inTable 2. Numbers shown here are the test set error ratesaveraged over the �ve random train/test splits. The�rst row of the table shows the test set accuracies forthe three classi�ers formed by supervised learning; thesecond row shows accuracies for the classi�ers formed byco-training. Note that for this data the default hypoth-esis that always predicts \negative" achieves an error

rate of 22%. Figure 2 gives a plot of error versus num-ber of iterations for one of the �ve runs.Notice that for all three types of classi�ers (hyperlink-based, page-based, and combined), the co-trained clas-si�er outperforms the classi�er formed by supervisedtraining. In fact, the page-based and combined classi-�ers achieve error rates that are half the error achievedby supervised training. The hyperlink-based classi�er ishelped less by co-training. This may be due to the factthat hyperlinks contain fewer words and are less capableof expressing an accurate approximation to the targetfunction.This experiment involves just one data set and onetarget function. Further experiments are needed to de-termine the general behavior of the co-training algo-rithm, and to determine what exactly is responsible forthe pattern of behavior observed. However, these re-sults do indicate that co-training can provide a usefulway of taking advantage of unlabeled data.7 CONCLUSIONS AND OPENQUESTIONSWe have described a model in which unlabeled data canbe used to augment labeled data, based on having twoviews (x1; x2) of an example that are redundant but notcompletely correlated. Our theoretical model is clearlyan over-simpli�cation of real-world target functions anddistributions. In particular, even for the optimal pair offunctions f1; f2 2 C1�C2 we would expect to occasion-ally see inconsistent examples (i.e., examples (x1; x2)such that f1(x1) 6= f2(x2)). Nonetheless, it provides away of looking at the notion of the \friendliness" of adistribution (in terms of the components and minimumcuts) and at how unlabeled examples can potentially



Page-based classi�er Hyperlink-based classi�er Combined classi�erSupervised training 12.9 12.4 11.1Co-training 6.2 11.6 5.0Table 2: Error rate in percent for classifying web pages as course home pages. The top row shows errors when trainingon only the labeled examples. Bottom row shows errors when co-training, using both labeled and unlabeled examples.
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Figure 2: Error versus number of iterations for one run of co-training experiment.



be used to prune away \incompatible" target conceptsto reduce the number of labeled examples needed tolearn. It is an open question to what extent the consis-tency constraints in the model and the mutual indepen-dence assumption of Section 5 can be relaxed and stillallow provable results on the utility of co-training fromunlabeled data. The preliminary experimental resultspresented suggest that this method of using unlabeleddata has a potential for signi�cant bene�ts in practice,though further studies are clearly needed.We conjecture that there are many practical learn-ing problems that �t or approximately �t the co-trainingmodel. For example, consider the problem of learningto classify segments of television broadcasts [9, 16]. Wemight be interested, say, in learning to identify televisedsegments containing the US President. Here X1 couldbe the set of possible video images, X2 the set of pos-sible audio signals, and X their cross product. Givena small sample of labeled segments, we might learn aweakly predictive recognizer h1 that spots full-frontalimages of the president's face, and a recognizer h2 thatspots his voice when no background noise is present.We could then use co-training applied to the large vol-ume of unlabeled television broadcasts, to improve theaccuracy of both classi�ers. Similar problems exist inmany perception learning tasks involving multiple sen-sors. For example, consider a mobile robot that mustlearn to recognize open doorways based on a collectionof vision (X1), sonar (X2), and laser range (X3) sen-sors. The important structure in the above problemsis that each instance x can be partitioned into subcom-ponents xi, where the xi are not perfectly correlated,where each xi can in principle be used on its own tomake the classi�cation, and where a large volume ofunlabeled instances can easily be collected.References[1] V. Castelli and T.M. Cover. On the exponentialvalue of labeled samples. Pattern Recognition Let-ters, 16:105{111, January 1995.[2] V. Castelli and T.M. Cover. The relative valueof labeled and unlabeled samples in pattern-recognition with an unknown mixing parame-ter. IEEE Transactions on Information Theory,42(6):2102{2117, November 1996.[3] M. Craven, D. Freitag, A. McCallum, T. Mitchell,K. Nigam, and C.Y. Quek. Learning to extractsymbolic knowledge from the world wide web.Technical report, Carnegie Mellon University, Jan-uary 1997.[4] S. E. Decatur. PAC learning with constant-partition classi�cation noise and applications to de-cision tree induction. In Proceedings of the Four-teenth International Conference on Machine Learn-ing, pages 83{91, July 1997.[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Max-imum likelihood from incomplete data via the EMalgorithm. Journal of the Royal Statistical SocietyB, 39:1{38, 1977.
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